These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18804114)
41. Chemical characterisation of disruptants of the Streptomyces coelicolor A3(2) actVI genes involved in actinorhodin biosynthesis. Taguchi T; Itou K; Ebizuka Y; Malpartida F; Hopwood DA; Surti CM; Booker-Milburn KI; Stephenson GR; Ichinose K J Antibiot (Tokyo); 2000 Feb; 53(2):144-52. PubMed ID: 10805574 [TBL] [Abstract][Full Text] [Related]
42. Spontaneous amplification of the actinorhodin gene cluster in Streptomyces coelicolor involving native insertion sequence IS466. Widenbrant EM; Tsai HH; Chen CW; Kao CM J Bacteriol; 2008 Jul; 190(13):4754-8. PubMed ID: 18441061 [TBL] [Abstract][Full Text] [Related]
43. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. Lee N; Kim W; Chung J; Lee Y; Cho S; Jang KS; Kim SC; Palsson B; Cho BK ISME J; 2020 May; 14(5):1111-1124. PubMed ID: 31992858 [TBL] [Abstract][Full Text] [Related]
44. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. Sciara G; Kendrew SG; Miele AE; Marsh NG; Federici L; Malatesta F; Schimperna G; Savino C; Vallone B EMBO J; 2003 Jan; 22(2):205-15. PubMed ID: 12514126 [TBL] [Abstract][Full Text] [Related]
45. Manipulating and understanding antibiotic production in Streptomyces coelicolor A3(2) with decoy oligonucleotides. McArthur M; Bibb MJ Proc Natl Acad Sci U S A; 2008 Jan; 105(3):1020-5. PubMed ID: 18187578 [TBL] [Abstract][Full Text] [Related]
46. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Huang J; Shi J; Molle V; Sohlberg B; Weaver D; Bibb MJ; Karoonuthaisiri N; Lih CJ; Kao CM; Buttner MJ; Cohen SN Mol Microbiol; 2005 Dec; 58(5):1276-87. PubMed ID: 16313616 [TBL] [Abstract][Full Text] [Related]
47. Regulation of myo-inositol catabolism by a GntR-type repressor SCO6974 in Streptomyces coelicolor. Yu L; Li S; Gao W; Pan Y; Tan H; Liu G Appl Microbiol Biotechnol; 2015 Apr; 99(7):3141-53. PubMed ID: 25575890 [TBL] [Abstract][Full Text] [Related]
48. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145. Ou X; Zhang B; Zhang L; Dong K; Liu C; Zhao G; Ding X Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):877-82. PubMed ID: 18850053 [TBL] [Abstract][Full Text] [Related]
49. Branched-chain amino acid catabolism provides precursors for the Type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. Stirrett K; Denoya C; Westpheling J J Ind Microbiol Biotechnol; 2009 Jan; 36(1):129-37. PubMed ID: 18841403 [TBL] [Abstract][Full Text] [Related]
50. Expression and characterization of Streptomyces coelicolor serine/threonine protein kinase PkaE. Urabe H; Ogawara H; Motojima K Biosci Biotechnol Biochem; 2015; 79(5):855-62. PubMed ID: 25560431 [TBL] [Abstract][Full Text] [Related]
51. Possible involvement of ActVI-ORFA in transcriptional regulation of actVI tailoring-step genes for actinorhodin biosynthesis. Taguchi T; Okamoto S; Lezhava A; Li A; Ochi K; Ebizuka Y; Ichinose K FEMS Microbiol Lett; 2007 Apr; 269(2):234-9. PubMed ID: 17227452 [TBL] [Abstract][Full Text] [Related]
52. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from Ray S; Maitra A; Biswas A; Panjikar S; Mondal J; Anand R J Biol Chem; 2017 Sep; 292(37):15301-15311. PubMed ID: 28739805 [TBL] [Abstract][Full Text] [Related]
53. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. Kahmann JD; Sass HJ; Allan MG; Seto H; Thompson CJ; Grzesiek S EMBO J; 2003 Apr; 22(8):1824-34. PubMed ID: 12682015 [TBL] [Abstract][Full Text] [Related]
54. Crystal structures of free and ligand-bound forms of the TetR/AcrR-like regulator SCO3201 from Streptomyces coelicolor suggest a novel allosteric mechanism. Werten S; Waack P; Palm GJ; Virolle MJ; Hinrichs W FEBS J; 2023 Jan; 290(2):521-532. PubMed ID: 36017630 [TBL] [Abstract][Full Text] [Related]
55. Characterization of stereospecific enoyl reductase ActVI-ORF2 for pyran ring formation in the actinorhodin biosynthesis of Streptomyces coelicolor A3(2). Ishikawa K; Hashimoto M; Komatsu K; Taguchi T; Okamoto S; Ichinose K Bioorg Med Chem Lett; 2022 Jun; 66():128727. PubMed ID: 35413414 [TBL] [Abstract][Full Text] [Related]
56. Genome context as a predictive tool for identifying regulatory targets of the TetR family transcriptional regulators. Ahn SK; Cuthbertson L; Nodwell JR PLoS One; 2012; 7(11):e50562. PubMed ID: 23226315 [TBL] [Abstract][Full Text] [Related]
57. Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations. Scaffaro R; Lopresti F; Sutera A; Botta L; Fontana RM; Puglia AM; Gallo G Macromol Biosci; 2016 May; 16(5):686-93. PubMed ID: 26762618 [TBL] [Abstract][Full Text] [Related]
58. An Autoregulated Fine-Tuning Strategy for Titer Improvement of Secondary Metabolites Using Native Promoters in Streptomyces. Li S; Wang J; Xiang W; Yang K; Li Z; Wang W ACS Synth Biol; 2018 Feb; 7(2):522-530. PubMed ID: 29087698 [TBL] [Abstract][Full Text] [Related]
59. Molecular basis for control of antibiotic production by a bacterial hormone. Zhou S; Bhukya H; Malet N; Harrison PJ; Rea D; Belousoff MJ; Venugopal H; Sydor PK; Styles KM; Song L; Cryle MJ; Alkhalaf LM; Fülöp V; Challis GL; Corre C Nature; 2021 Feb; 590(7846):463-467. PubMed ID: 33536618 [TBL] [Abstract][Full Text] [Related]
60. Synthetic studies on actinorhodin and γ-actinorhodin: synthesis of deoxyactinorhodin and deoxy-γ-actinorhodin/crisamicin A isomer. Mulay SV; Fernandes RA Chemistry; 2015 Mar; 21(12):4842-52. PubMed ID: 25677470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]