BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18804161)

  • 1. Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast.
    Favre C; Aguilar PS; Carrillo MC
    Free Radic Biol Med; 2008 Nov; 45(10):1446-56. PubMed ID: 18804161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of deleting mitochondrial antioxidant genes on life span.
    Unlu ES; Koc A
    Ann N Y Acad Sci; 2007 Apr; 1100():505-9. PubMed ID: 17460215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low auxotrophy-complementing amino acid concentrations reduce yeast chronological life span.
    Gomes P; Sampaio-Marques B; Ludovico P; Rodrigues F; Leão C
    Mech Ageing Dev; 2007; 128(5-6):383-91. PubMed ID: 17544056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis.
    Laun P; Pichova A; Madeo F; Fuchs J; Ellinger A; Kohlwein S; Dawes I; Fröhlich KU; Breitenbach M
    Mol Microbiol; 2001 Mar; 39(5):1166-73. PubMed ID: 11251834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae.
    Kitanovic A; Wölfl S
    Mutat Res; 2006 Feb; 594(1-2):135-47. PubMed ID: 16199065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes.
    Demir AB; Koc A
    Biochem Biophys Res Commun; 2010 Sep; 400(1):106-10. PubMed ID: 20707985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reserve carbohydrates maintain the viability of Saccharomyces cerevisiae cells during chronological aging.
    Samokhvalov V; Ignatov V; Kondrashova M
    Mech Ageing Dev; 2004 Mar; 125(3):229-35. PubMed ID: 15013667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the yeast glycogen phosphorylase gene is regulated by stress-response elements and by the HOG MAP kinase pathway.
    Sunnarborg SW; Miller SP; Unnikrishnan I; LaPorte DC
    Yeast; 2001 Dec; 18(16):1505-14. PubMed ID: 11748727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronological aging leads to apoptosis in yeast.
    Herker E; Jungwirth H; Lehmann KA; Maldener C; Fröhlich KU; Wissing S; Büttner S; Fehr M; Sigrist S; Madeo F
    J Cell Biol; 2004 Feb; 164(4):501-7. PubMed ID: 14970189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compensatory increase in trehalose synthesis in response to desiccation stress in Saccharomyces cerevisiae cells lacking the heat shock protein Hsp12p.
    Shamrock VJ; Lindsey GG
    Can J Microbiol; 2008 Jul; 54(7):559-68. PubMed ID: 18641702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms.
    MacLean M; Harris N; Piper PW
    Yeast; 2001 Apr; 18(6):499-509. PubMed ID: 11284006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast.
    Eisler H; Fröhlich KU; Heidenreich E
    Exp Cell Res; 2004 Nov; 300(2):345-53. PubMed ID: 15474999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species.
    Skoneczna A; Miciałkiewicz A; Skoneczny M
    Free Radic Biol Med; 2007 May; 42(9):1409-20. PubMed ID: 17395014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration.
    Chen Q; Ding Q; Keller JN
    Biogerontology; 2005; 6(1):1-13. PubMed ID: 15834659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress sensitivity in Debaryomyces hansenii.
    Navarrete C; Siles A; Martínez JL; Calero F; Ramos J
    FEMS Yeast Res; 2009 Jun; 9(4):582-90. PubMed ID: 19302096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of chronological aging on the survival and nucleotide content of Saccharomyces cerevisiae cells grown in different conditions: occurrence of a high concentration of UDP-N-acetylglucosamine in stationary cells grown in 2% glucose.
    Osório H; Silles E; Maia R; Peleteiro B; Moradas-Ferreira P; Günther Sillero MA; Sillero A
    FEMS Yeast Res; 2005 Feb; 5(4-5):387-98. PubMed ID: 15691744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance.
    Michel S; Keller MA; Wamelink MM; Ralser M
    BMC Genet; 2015 Feb; 16():13. PubMed ID: 25887987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.
    Semchyshyn HM; Lozinska LM; Miedzobrodzki J; Lushchak VI
    Carbohydr Res; 2011 May; 346(7):933-8. PubMed ID: 21459368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.