BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18804161)

  • 21. Mutations in the RAD27 and SGS1 genes differentially affect the chronological and replicative lifespan of yeast cells growing on glucose and glycerol.
    Ringvoll J; Uldal L; Roed MA; Reite K; Baynton K; Klungland A; Eide L
    FEMS Yeast Res; 2007 Sep; 7(6):848-59. PubMed ID: 17506834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximising the yeast chronological lifespan.
    Piper PW
    Subcell Biochem; 2012; 57():145-59. PubMed ID: 22094421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants.
    Amari F; Fettouche A; Samra MA; Kefalas P; Kampranis SC; Makris AM
    J Agric Food Chem; 2008 Dec; 56(24):11740-51. PubMed ID: 19049288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae.
    Hwang PK; Tugendreich S; Fletterick RJ
    Mol Cell Biol; 1989 Apr; 9(4):1659-66. PubMed ID: 2657401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast.
    Aerts AM; François IE; Bammens L; Cammue BP; Smets B; Winderickx J; Accardo S; De Vos DE; Thevissen K
    FEBS Lett; 2006 Mar; 580(7):1903-7. PubMed ID: 16527275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Role of trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells].
    Samokhvalov VA; Mel'nikov GV; Ignatov VV
    Mikrobiologiia; 2004; 73(4):449-54. PubMed ID: 15521168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The chronological life span of Saccharomyces cerevisiae.
    Fabrizio P; Longo VD
    Aging Cell; 2003 Apr; 2(2):73-81. PubMed ID: 12882320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.
    Kitanovic A; Walther T; Loret MO; Holzwarth J; Kitanovic I; Bonowski F; Van Bui N; Francois JM; Wölfl S
    FEMS Yeast Res; 2009 Jun; 9(4):535-51. PubMed ID: 19341380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cucurbitacin B Exerts Antiaging Effects in Yeast by Regulating Autophagy and Oxidative Stress.
    Lin Y; Kotakeyama Y; Li J; Pan Y; Matsuura A; Ohya Y; Yoshida M; Xiang L; Qi J
    Oxid Med Cell Longev; 2019; 2019():4517091. PubMed ID: 31281576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae.
    Mahmud SA; Nagahisa K; Hirasawa T; Yoshikawa K; Ashitani K; Shimizu H
    Yeast; 2009 Jan; 26(1):17-30. PubMed ID: 19180643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress and aging: Learning from yeast lessons.
    Eleutherio E; Brasil AA; França MB; de Almeida DSG; Rona GB; Magalhães RSS
    Fungal Biol; 2018 Jun; 122(6):514-525. PubMed ID: 29801796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indicators of oxidative stress and apoptosis in mouse whole lung and Clara cells following exposure to styrene and its metabolites.
    Harvilchuck JA; Pu X; Klaunig JE; Carlson GP
    Toxicology; 2009 Oct; 264(3):171-8. PubMed ID: 19666080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures.
    Werner-Washburne M; Roy S; Davidson GS
    Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role for yeast glutaredoxin genes in selenite-mediated oxidative stress.
    Lewinska A; Bartosz G
    Fungal Genet Biol; 2008 Aug; 45(8):1182-7. PubMed ID: 18614384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response.
    Verbelen PJ; Depraetere SA; Winderickx J; Delvaux FR; Delvaux F
    FEMS Yeast Res; 2009 Mar; 9(2):226-39. PubMed ID: 19175415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ROS in the aging male: model diseases with ROS-related pathophysiology.
    Angelopoulou R; Lavranos G; Manolakou P
    Reprod Toxicol; 2009 Sep; 28(2):167-71. PubMed ID: 19379805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway.
    Almeida B; Ohlmeier S; Almeida AJ; Madeo F; Leão C; Rodrigues F; Ludovico P
    Proteomics; 2009 Feb; 9(3):720-32. PubMed ID: 19137548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease.
    Parrella E; Longo VD
    Methods; 2008 Dec; 46(4):256-62. PubMed ID: 18930829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Petite mutation in aged and oxidatively stressed ale and lager brewing yeast.
    Gibson BR; Prescott KA; Smart KA
    Lett Appl Microbiol; 2008 Jun; 46(6):636-42. PubMed ID: 18422942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.