BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18804182)

  • 1. Antibody-based identification of cell surface antigens: targets for cancer therapy.
    Loo DT; Mather JP
    Curr Opin Pharmacol; 2008 Oct; 8(5):627-31. PubMed ID: 18804182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of cell surface antigens for antibody targeting in oncology.
    Carter P; Smith L; Ryan M
    Endocr Relat Cancer; 2004 Dec; 11(4):659-87. PubMed ID: 15613445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of target membrane proteins as detected by phage antibodies.
    Geuijen CA; Bakker AQ; de Kruif J
    Methods Mol Biol; 2009; 528():141-58. PubMed ID: 19153691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of recombinant antibody microarrays for cell surface membrane proteomics.
    Dexlin L; Ingvarsson J; Frendéus B; Borrebaeck CA; Wingren C
    J Proteome Res; 2008 Jan; 7(1):319-27. PubMed ID: 18047267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibody CC188 binds a carbohydrate epitope expressed on the surface of both colorectal cancer stem cells and their differentiated progeny.
    Xu M; Yuan Y; Xia Y; Achilefu S
    Clin Cancer Res; 2008 Nov; 14(22):7461-9. PubMed ID: 19010863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting cancer stem cells with monoclonal antibodies: a new perspective in cancer therapy and diagnosis.
    Okamoto OK; Perez JF
    Expert Rev Mol Diagn; 2008 Jul; 8(4):387-93. PubMed ID: 18598221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target therapy of cancer: implementation of monoclonal antibodies and nanobodies.
    Majidi J; Barar J; Baradaran B; Abdolalizadeh J; Omidi Y
    Hum Antibodies; 2009; 18(3):81-100. PubMed ID: 19729803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: identification of human embryonic stem cell surface markers by monoclonal antibodies.
    Choi HS; Kim WT; Ryu CJ
    Biotechnol J; 2014 Jul; 9(7):915-20. PubMed ID: 24616439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular diversity of TEX101, a marker glycoprotein for germ cells monitored with monoclonal antibodies: variety of the molecular characteristics according to subcellular localization within the mouse testis.
    Yoshitake H; Shirai Y; Mochizuki Y; Iwanari H; Tsubamoto H; Koyama K; Takamori K; Ogawa H; Hasegawa A; Kodama T; Hamakubo T; Araki Y
    J Reprod Immunol; 2008 Oct; 79(1):1-11. PubMed ID: 18620756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development.
    Sahin U; Koslowski M; Dhaene K; Usener D; Brandenburg G; Seitz G; Huber C; Türeci O
    Clin Cancer Res; 2008 Dec; 14(23):7624-34. PubMed ID: 19047087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antigenic basis of diversity in the gammadelta T cell co-receptor WC1 family.
    Chen C; Herzig CT; Telfer JC; Baldwin CL
    Mol Immunol; 2009 Aug; 46(13):2565-75. PubMed ID: 19539374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based approaches to antibiotic drug discovery.
    Nicola G; Abagyan R
    Curr Protoc Microbiol; 2009 Feb; Chapter 17():Unit17.2. PubMed ID: 19235149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Awaiting a new era of cancer immunotherapy.
    Hong CW; Zeng Q
    Cancer Res; 2012 Aug; 72(15):3715-9. PubMed ID: 22815525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations between Terasaki's HLA class I epitopes and HLAMatchmaker-defined eplets on HLA-A, -B and -C antigens.
    Duquesnoy RJ; Marrari M
    Tissue Antigens; 2009 Aug; 74(2):117-33. PubMed ID: 19497041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-based therapies in breast cancer: current status and future perspectives.
    Normanno N; Morabito A; De Luca A; Piccirillo MC; Gallo M; Maiello MR; Perrone F
    Endocr Relat Cancer; 2009 Sep; 16(3):675-702. PubMed ID: 19525314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular therapeutics in patients with cancer unresponsive to conventional treatments].
    Valdespino-Gómez VM; Valdespino-Castillo VE
    Gac Med Mex; 2008; 144(4):333-44. PubMed ID: 18942268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using CD40-activated B cells to efficiently identify epitopes of tumor antigens.
    Kondo E; Gryschok L; Schultze JL; von Bergwelt-Baildon MS
    J Immunother; 2009; 32(2):157-60. PubMed ID: 19238014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of genomics in bacterial vaccine discovery: a decade in review.
    Zagursky RJ; Anderson AS
    Curr Opin Pharmacol; 2008 Oct; 8(5):632-8. PubMed ID: 18625342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design.
    Deyev SM; Lebedenko EN
    Bioessays; 2008 Sep; 30(9):904-18. PubMed ID: 18693269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.