BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1880460)

  • 1. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality assurance in various radiative hyperthermia systems applying a phantom with LED matrix.
    Schneider CJ; van Dijk JD; De Leeuw AA; Wust P; Baumhoer W
    Int J Hyperthermia; 1994; 10(5):733-47. PubMed ID: 7806928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibrated electro-optic E-field sensors for hyperthermia applications.
    Berger J; Petermann K; Fähling H; Wust P
    Phys Med Biol; 2001 Feb; 46(2):399-411. PubMed ID: 11229722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet.
    Van Rhoon GC; Van Der Heuvel DJ; Ameziane A; Rietveld PJ; Volenec K; Van Der Zee J
    Int J Hyperthermia; 2003; 19(6):642-54. PubMed ID: 14756453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and testing of SAR-visualizing phantoms for quality control in RF hyperthermia.
    Wust P; Fähling H; Jordan A; Nadobny J; Seebass M; Felix R
    Int J Hyperthermia; 1994; 10(1):127-42. PubMed ID: 8144984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radio-frequency ring applicator: energy distributions measured in the CDRH phantom.
    van Rhoon GC; Raskmark P; Hornsleth SN; van den Berg PM
    Med Biol Eng Comput; 1994 Nov; 32(6):643-8. PubMed ID: 7723423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of annular arrays in practice: the measurement of phase and amplitude patterns of radio-frequency deep body applicators.
    Schneider CJ; Kuijer JP; Colussi LC; Schepp CJ; Van Dijk JD
    Med Phys; 1995 Jun; 22(6):755-65. PubMed ID: 7565364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning E-field sensor device for online measurements in annular phased-array systems.
    Wust P; Berger J; Fähling H; Nadobny J; Gellermann J; Tilly W; Rau B; Petermann K; Felix R
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(4):927-37. PubMed ID: 10098449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The measurement of fringing fields in a radio-frequency hyperthermia array with emphasis on bolus size.
    Wiersma J; van Dijk JD; Sijbrands J; Schneider CJ
    Int J Hyperthermia; 1998; 14(6):535-51. PubMed ID: 9886661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative determination of SAR profiles from photographs of the light-emitting diode matrix.
    Schneider CJ; de Leeuw AA; van Dijk JD
    Int J Hyperthermia; 1992; 8(5):609-19. PubMed ID: 1402137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electric field measurement system, using two-dimensional array of diodes.
    Kaatee RS; van Rhoon GC
    Int J Hyperthermia; 1999; 15(5):441-54. PubMed ID: 10519695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field distributions of waveguide arrays for local tumor hyperthermia.
    Becerra C; Rebollar J
    J Microw Power Electromagn Energy; 1988; 23(4):247-54. PubMed ID: 3244069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.