These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 18804602)

  • 1. Development of an electronic nose to identify and quantify volatile hazardous compounds.
    Fernandes DL; Gomes MT
    Talanta; 2008 Oct; 77(1):77-83. PubMed ID: 18804602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz crystal microbalance sensor array for the detection of volatile organic compounds.
    Xu X; Cang H; Li C; Zhao ZK; Li H
    Talanta; 2009 May; 78(3):711-6. PubMed ID: 19269417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds.
    Dong Y; Gao W; Zhou Q; Zheng Y; You Z
    Anal Chim Acta; 2010 Jun; 671(1-2):85-91. PubMed ID: 20541647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of quaternary mixtures of low alcohols in water: temporal-resolved measurements with microporous and hyperbranched polymer sensors for reduction of sensor number.
    Vollprecht M; Dieterle F; Busche S; Gauglitz G; Eichhorn KJ; Voit B
    Anal Chem; 2005 Sep; 77(17):5542-50. PubMed ID: 16131064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.
    Ayad MM; Torad NL
    Talanta; 2009 Jun; 78(4-5):1280-5. PubMed ID: 19362188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC-MS analysis of volatile compounds.
    Cevoli C; Cerretani L; Gori A; Caboni MF; Gallina Toschi T; Fabbri A
    Food Chem; 2011 Dec; 129(3):1315-9. PubMed ID: 25212373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration transfer between electronic nose systems for rapid in situ measurement of pulp and paper industry emissions.
    Deshmukh S; Kamde K; Jana A; Korde S; Bandyopadhyay R; Sankar R; Bhattacharyya N; Pandey RA
    Anal Chim Acta; 2014 Sep; 841():58-67. PubMed ID: 25109862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of autoxidation in LCPUFA-enriched lipid microparticles by electronic nose and SPME-GCMS.
    Benedetti S; Drusch S; Mannino S
    Talanta; 2009 Jun; 78(4-5):1266-71. PubMed ID: 19362186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor array data profiling for gas identification.
    Szczurek A; Maciejewska M; Ochromowicz L
    Talanta; 2009 May; 78(3):840-5. PubMed ID: 19269438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection.
    Strle D; Štefane B; Trifkovič M; Van Miden M; Kvasić I; Zupanič E; Muševič I
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29292764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD.
    Dragonieri S; Annema JT; Schot R; van der Schee MP; Spanevello A; Carratú P; Resta O; Rabe KF; Sterk PJ
    Lung Cancer; 2009 May; 64(2):166-70. PubMed ID: 18834643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an artificial neural network (ANN) and piezoelectric chemical sensor array for identification of volatile organic compounds.
    Barkó G; Hlavay J
    Talanta; 1997 Dec; 44(12):2237-45. PubMed ID: 18966974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel monolithic quartz crystal microbalance gas sensor array.
    Jin X; Huang Y; Mason A; Zeng X
    Anal Chem; 2009 Jan; 81(2):595-603. PubMed ID: 19090744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chemometric approach based on a novel similarity/diversity measure for the characterisation and selection of electronic nose sensors.
    Ballabio D; Cosio MS; Mannino S; Todeschini R
    Anal Chim Acta; 2006 Sep; 578(2):170-7. PubMed ID: 17723709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of sequential injection analysis to construct an electronic-tongue: application to multidetermination employing the transient response of a potentiometric sensor array.
    Calvo D; Durán A; Del Valle M
    Anal Chim Acta; 2007 Sep; 600(1-2):97-104. PubMed ID: 17903470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct integration of pervaporation as a sample preparation method for a dedicated "electronic nose".
    Pinheiro C; Schäfer T; Crespo JG
    Anal Chem; 2005 Aug; 77(15):4927-35. PubMed ID: 16053306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks.
    Szulczyński B; Armiński K; Namieśnik J; Gębicki J
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29419798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D CFD Simulation and Analysis of Flow-Induced Forces on Polymer Piezoelectric Sensors in a Chinese Liquors Identification E-Nose.
    Gu Y; Wang YF; Li Q; Liu ZW
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of red wines using an electronic nose based on surface acoustic wave devices.
    García M; Fernández MJ; Fontecha JL; Lozano J; Santos JP; Aleixandre M; Sayago I; Gutiérrez J; Horrillo MC
    Talanta; 2006 Feb; 68(4):1162-5. PubMed ID: 18970446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.