BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 18804763)

  • 1. Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces.
    Dubowsky SR; Rasmussen J; Sisto SA; Langrana NA
    J Biomech; 2008 Oct; 41(14):2981-8. PubMed ID: 18804763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comments about the article titled: Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces, written by S.R. Dubowsky, J. Rasmussen, S.A. Sisto, N.A. Langrana (41(2008) 2981-2988).
    Louis N
    J Biomech; 2009 Nov; 42(15):2627. PubMed ID: 19643413
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shoulder kinematics and kinetics during two speeds of wheelchair propulsion.
    Koontz AM; Cooper RA; Boninger ML; Souza AL; Fay BT
    J Rehabil Res Dev; 2002; 39(6):635-49. PubMed ID: 17943666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Authors' response to "comments on 'validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces'".
    Dubowsky SR
    J Biomech; 2010 Sep; 43(13):2656. PubMed ID: 20627305
    [No Abstract]   [Full Text] [Related]  

  • 8. Shoulder joint kinetics and pathology in manual wheelchair users.
    Mercer JL; Boninger M; Koontz A; Ren D; Dyson-Hudson T; Cooper R
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):781-9. PubMed ID: 16808992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of resultant force at the pushrim on shoulder kinetics during manual wheelchair propulsion: a simulation study.
    Desroches G; Aissaoui R; Bourbonnais D
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1423-31. PubMed ID: 18390334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement.
    Finley MA; McQuade KJ; Rodgers MM
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):32-40. PubMed ID: 15567534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoulder movements during the initial phase of learning manual wheelchair propulsion in able-bodied subjects.
    Roux L; Hanneton S; Roby-Brami A
    Clin Biomech (Bristol, Avon); 2006; 21 Suppl 1():S45-51. PubMed ID: 16274903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoulder load during handcycling at different incline and speed conditions.
    Arnet U; van Drongelen S; van der Woude LH; Veeger DH
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):1-6. PubMed ID: 21831491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.
    Kloosterman MG; Eising H; Schaake L; Buurke JH; Rietman JS
    Clin Biomech (Bristol, Avon); 2012 Jun; 27(5):428-35. PubMed ID: 22209484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L; Requejo PS; Mulroy SJ; Newsam CJ; Bontrager E; Gronley JK; Perry J
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the external forces and moments at the shoulder and elbow while performing every day tasks.
    Murray IA; Johnson GR
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):586-94. PubMed ID: 15234482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional kinematics of the shoulder complex during wheelchair propulsion: a technical report.
    Davis JL; Growney ES; Johnson ME; Iuliano BA; An KN
    J Rehabil Res Dev; 1998 Jan; 35(1):61-72. PubMed ID: 9505254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on "A study of the external forces and moments at the shoulder and elbow while performing every day tasks".
    Anglin C; Wyss UP
    Clin Biomech (Bristol, Avon); 2005 Mar; 20(3):340; author reply 341. PubMed ID: 15698709
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.