BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 18804837)

  • 1. Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh.
    Duarte B; Reboreda R; Caçador I
    Chemosphere; 2008 Oct; 73(7):1056-63. PubMed ID: 18804837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.
    Reboreda R; Caçador I
    Mar Environ Res; 2008 Feb; 65(1):77-84. PubMed ID: 17935772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stock and losses of trace metals from salt marsh plants.
    Caçador I; Caetano M; Duarte B; Vale C
    Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal).
    Pereira P; Caçador I; Vale C; Caetano M; Costa AL
    Sci Total Environ; 2007 Jul; 380(1-3):93-101. PubMed ID: 17316771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability of metal contents in the sea rush Juncus maritimus-estuarine sediment system through one year of plant's life.
    Almeida CM; Mucha AP; Vasconcelos MT
    Mar Environ Res; 2006 May; 61(4):424-38. PubMed ID: 16434094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure.
    Válega M; Lima AI; Figueira EM; Pereira E; Pardal MA; Duarte AC
    Chemosphere; 2009 Jan; 74(4):530-6. PubMed ID: 19004465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).
    Duarte B; Caetano M; Almeida PR; Vale C; Caçador I
    Environ Pollut; 2010 May; 158(5):1661-8. PubMed ID: 20036450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and effects of heavy metals in salt marsh sediments.
    Suntornvongsagul K; Burke DJ; Hamerlynck EP; Hahn D
    Environ Pollut; 2007 Sep; 149(1):79-91. PubMed ID: 17291650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary.
    Poulin P; Pelletier E; Saint-Louis R
    Mar Environ Res; 2007 Jun; 63(5):490-505. PubMed ID: 17276505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie.
    Hoostal MJ; Bidart-Bouzat MG; Bouzat JL
    FEMS Microbiol Ecol; 2008 Jul; 65(1):156-68. PubMed ID: 18559016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh.
    Castro R; Pereira S; Lima A; Corticeiro S; Válega M; Pereira E; Duarte A; Figueira E
    Chemosphere; 2009 Sep; 76(10):1348-55. PubMed ID: 19595432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal burdens in patches of asphyxiated swamp areas within the Qua Iboe estuary mangrove ecosystem.
    Essien JP; Essien V; Olajire AA
    Environ Res; 2009 Aug; 109(6):690-6. PubMed ID: 19464676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal and spatial distribution of metals in surface sediment of an urban estuary.
    Buggy CJ; Tobin JM
    Environ Pollut; 2008 Sep; 155(2):308-19. PubMed ID: 18207295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal mobility in intertidal sediments of the Scheldt estuary: Field monitoring.
    Du Laing G; Meers E; Dewispelaere M; Vandecasteele B; Rinklebe J; Tack FM; Verloo MG
    Sci Total Environ; 2009 Apr; 407(8):2919-30. PubMed ID: 19167025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides.
    Duarte B; Delgado M; Caçador I
    Chemosphere; 2007 Oct; 69(5):836-40. PubMed ID: 17585999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox status and heavy metal risk in intertidal sediments in NW Spain as inferred from the degrees of pyritization of iron and trace elements.
    Alvarez-Iglesias P; Rubio B
    Mar Pollut Bull; 2009 Apr; 58(4):542-51. PubMed ID: 19114282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.