These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1880498)

  • 1. Inactivation of intestinal alkaline phosphatase by inositol hexaphosphate-Cu (II) coordinate complexes.
    Martin CJ; Evans WJ
    J Inorg Biochem; 1991 May; 42(3):161-75. PubMed ID: 1880498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase.
    Martin CJ
    J Inorg Biochem; 1995 May; 58(2):89-107. PubMed ID: 7769385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible inhibition of intestinal alkaline phosphatase by inositol hexaphosphate and its Cu(II) coordinate complexes.
    Martin CJ; Evans WJ
    J Inorg Biochem; 1991 May; 42(3):177-84. PubMed ID: 1880499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol hexaphosphate and its Cu(II) coordinate complex as inhibitors of intestinal alkaline phosphatase.
    Martin CJ; Evans WJ
    Res Commun Chem Pathol Pharmacol; 1989 Sep; 65(3):289-96. PubMed ID: 2813956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytic acid-enhanced metal ion exchange reactions: the effect on carboxypeptidase A.
    Martin CJ; Evans WJ
    J Inorg Biochem; 1989 Apr; 35(4):267-88. PubMed ID: 2496197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Influence of Zn++ and of Mg++ on alkaline phosphatase activity of different origins].
    Casey H; Zanobini A; Firenzuoli AM; Treves C; Bianchi A
    Boll Soc Ital Biol Sper; 1980 Jan; 56(2):108-14. PubMed ID: 7002169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.
    Fujimoto S; Okano I; Tanaka Y; Sumida Y; Tsuda J; Kawakami N; Shimohama S
    Biol Pharm Bull; 1996 Jun; 19(6):882-5. PubMed ID: 8799493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paradoxical digestion of myo-inositol phosphates by alkaline phosphatase at low pH.
    McPherson GA
    Life Sci; 1990; 47(17):1569-77. PubMed ID: 2250569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of inactivation of Ulva pertusa Kjellm alkaline phosphatase by ethylenediaminetetraacetic acid disodium.
    Yang D; Wang J; Peng X; An L
    J Enzyme Inhib; 2001 Oct; 16(4):313-9. PubMed ID: 11916136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and function of acid proteases. IV. Inactivation of the acid protease from Mucor pusillus by acid protease-specific inhibitors.
    Takahashi K; Chang WJ; Arima K
    J Biochem; 1976 Jul; 80(1):61-7. PubMed ID: 9381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: spectroscopic evidence for rapid surface precipitation.
    Yan Y; Li W; Yang J; Zheng A; Liu F; Feng X; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6735-42. PubMed ID: 24871399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-catalyzed oxidation and cleavage of octopus glutathione transferase by the Cu(II)-ascorbate system.
    Tang SS; Lin CC; Chang GG
    Free Radic Biol Med; 1996; 21(7):955-64. PubMed ID: 8937881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanisms of inositol hexakisphosphate in the presence of phosphate at the amorphous aluminum oxyhydroxide-water interface.
    Xu S; Arai Y
    Sci Total Environ; 2022 Sep; 837():155525. PubMed ID: 35489486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Dissolution and Transformation of ZnO Nanoparticles: The Role of Inositol Hexakisphosphate.
    Feng X; Yan Y; Wan B; Li W; Jaisi DP; Zheng L; Zhang J; Liu F
    Environ Sci Technol; 2016 Jun; 50(11):5651-60. PubMed ID: 27159895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of inactivation of green crab (Scylla Serrata) alkaline phosphatase during removal of zinc ions by ethylenediaminetetraacetic acid disodium.
    Chen QX; Zhang W; Wang HR; Zhou HM
    Int J Biol Macromol; 1996 Dec; 19(4):257-61. PubMed ID: 9024901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies.
    Kubíček V; Böhmová Z; Ševčíková R; Vaněk J; Lubal P; Poláková Z; Michalicová R; Kotek J; Hermann P
    Inorg Chem; 2018 Mar; 57(6):3061-3072. PubMed ID: 29488748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Kinetics of inactivation of calf intestine alkaline phosphatase by EDTA with absorption spectrum method].
    Wang JY; Peng XJ; Yang D; An LJ; Hu JH; Zheng XF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):701-3. PubMed ID: 12945337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation and reactivation of phosphoprotein phosphatase.
    Yan SC; Graves DJ
    Mol Cell Biochem; 1982 Jan; 42(1):21-9. PubMed ID: 6278282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, potentiometric, kinetic, and NMR Studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) ions.
    Kálmán FK; Baranyai Z; Tóth I; Bányai I; Király R; Brücher E; Aime S; Sun X; Sherry AD; Kovács Z
    Inorg Chem; 2008 May; 47(9):3851-62. PubMed ID: 18380456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.