These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1880533)

  • 1. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology.
    Blight AR
    J Neurol Sci; 1991 Jun; 103(2):156-71. PubMed ID: 1880533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage.
    Blight AR
    Neuroscience; 1994 May; 60(1):263-73. PubMed ID: 8052418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometric analysis of blood vessels in chronic experimental spinal cord injury: hypervascularity and recovery of function.
    Blight AR
    J Neurol Sci; 1991 Dec; 106(2):158-74. PubMed ID: 1802964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury.
    Yates JR; Heyes MP; Blight AR
    J Neurotrauma; 2006 Jun; 23(6):866-81. PubMed ID: 16774472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol.
    Borgens RB; Shi R; Bohnert D
    J Exp Biol; 2002 Jan; 205(Pt 1):1-12. PubMed ID: 11818407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of methylprednisolone and 4-chloro-3-hydroxyanthranilic acid in experimental spinal cord injury in the guinea pig appear to be mediated by different and potentially complementary mechanisms.
    Yates JR; Gay EA; Heyes MP; Blight AR
    Spinal Cord; 2014 Sep; 52(9):662-6. PubMed ID: 25047053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury.
    Forgione N; Chamankhah M; Fehlings MG
    J Neurotrauma; 2017 Mar; 34(6):1227-1239. PubMed ID: 27931169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mouse model of graded contusive spinal cord injury.
    Kuhn PL; Wrathall JR
    J Neurotrauma; 1998 Feb; 15(2):125-40. PubMed ID: 9512088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons.
    Blight AR; Decrescito V
    Neuroscience; 1986 Sep; 19(1):321-41. PubMed ID: 3785669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression.
    Gruner JA; Yee AK; Blight AR
    Brain Res; 1996 Aug; 729(1):90-101. PubMed ID: 8874880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous application of two neurotrophic factors after spinal cord injury.
    Bohnert DM; Purvines S; Shapiro S; Borgens RB
    J Neurotrauma; 2007 May; 24(5):846-63. PubMed ID: 17518539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Acute Impact-Compression Lumbar Spinal Cord Injury Model in the Rodent.
    Moonen G; Satkunendrarajah K; Wilcox JT; Badner A; Mothe A; Foltz W; Fehlings MG; Tator CH
    J Neurotrauma; 2016 Feb; 33(3):278-89. PubMed ID: 26414192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment.
    Gale K; Kerasidis H; Wrathall JR
    Exp Neurol; 1985 Apr; 88(1):123-34. PubMed ID: 3979506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol.
    Borgens RB; Bohnert D
    J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded contusion model of the mouse spinal cord using a pneumatic impact device.
    Seki T; Hida K; Tada M; Koyanagi I; Iwasaki Y
    Neurosurgery; 2002 May; 50(5):1075-81; discussion 1081-2. PubMed ID: 11950411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse.
    Ma M; Basso DM; Walters P; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jun; 169(2):239-54. PubMed ID: 11358439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traumatic spinal cord injury produced by controlled contusion in mouse.
    Jakeman LB; Guan Z; Wei P; Ponnappan R; Dzwonczyk R; Popovich PG; Stokes BT
    J Neurotrauma; 2000 Apr; 17(4):299-319. PubMed ID: 10776914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury.
    Jakeman LB; Wei P; Guan Z; Stokes BT
    Exp Neurol; 1998 Nov; 154(1):170-84. PubMed ID: 9875278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.