BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18805558)

  • 1. Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment.
    Cambrollé J; Redondo-Gómez S; Mateos-Naranjo E; Figueroa ME
    Mar Pollut Bull; 2008 Dec; 56(12):2037-42. PubMed ID: 18805558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability of metal contents in the sea rush Juncus maritimus-estuarine sediment system through one year of plant's life.
    Almeida CM; Mucha AP; Vasconcelos MT
    Mar Environ Res; 2006 May; 61(4):424-38. PubMed ID: 16434094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment.
    Almeida CM; Mucha AP; Vasconcelos MT
    Environ Pollut; 2006 Jul; 142(1):151-9. PubMed ID: 16278040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary.
    Vicente-Martorell JJ; Galindo-Riaño MD; García-Vargas M; Granado-Castro MD
    J Hazard Mater; 2009 Mar; 162(2-3):823-36. PubMed ID: 18620807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary.
    Curado G; Rubio-Casal AE; Figueroa E; Castillo JM
    Int J Phytoremediation; 2014; 16(7-12):1209-20. PubMed ID: 24933912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary.
    Nieto JM; Sarmiento AM; Olías M; Canovas CR; Riba I; Kalman J; Delvalls TA
    Environ Int; 2007 May; 33(4):445-55. PubMed ID: 17196253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germination and establishment of the invasive cordgrass Spartina densiflora in acidic and metal polluted sediments of the Tinto River.
    Curado G; Rubio-Casal AE; Figueroa E; Castillo JM
    Mar Pollut Bull; 2010 Oct; 60(10):1842-8. PubMed ID: 20579674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland.
    Samecka-Cymerman A; Kempers AJ
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):198-206. PubMed ID: 17549539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal).
    Pereira P; Caçador I; Vale C; Caetano M; Costa AL
    Sci Total Environ; 2007 Jul; 380(1-3):93-101. PubMed ID: 17316771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents.
    Cánovas CR; Olías M; Nieto JM; Sarmiento AM; Cerón JC
    Sci Total Environ; 2007 Feb; 373(1):363-82. PubMed ID: 17207846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.
    Caetano M; Fonseca N; Cesário Carlos Vale R
    Sci Total Environ; 2007 Jul; 380(1-3):84-92. PubMed ID: 17320933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elemental status in sediment and American oyster collected from Savannah marsh/estuarine ecosystem: a preliminary assessment.
    Sajwan KS; Kumar KS; Paramasivam S; Compton SS; Richardson JP
    Arch Environ Contam Toxicol; 2008 Feb; 54(2):245-58. PubMed ID: 17876649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitors of water polluted with heavy metals.
    Samecka-Cymerman A; Kolon K; Kempers AJ
    Sci Total Environ; 2005 Apr; 341(1-3):97-107. PubMed ID: 15833244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.