These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 18805698)
1. New potent cathepsin G phosphonate inhibitors. Sieńczyk M; Lesner A; Wysocka M; Legowska A; Pietrusewicz E; Rolka K; Oleksyszyn J Bioorg Med Chem; 2008 Oct; 16(19):8863-7. PubMed ID: 18805698 [TBL] [Abstract][Full Text] [Related]
2. Asymmetric preference of serine proteases toward phosphonate and phosphinate esters. Walker B; Wharry S; Hamilton RJ; Martin SL; Healy A; Walker BJ Biochem Biophys Res Commun; 2000 Oct; 276(3):1235-9. PubMed ID: 11027616 [TBL] [Abstract][Full Text] [Related]
3. Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors. Łegowska A; Debowski D; Lesner A; Wysocka M; Rolka K Bioorg Med Chem; 2009 May; 17(9):3302-7. PubMed ID: 19362846 [TBL] [Abstract][Full Text] [Related]
4. Structure-based design of a general class of mechanism-based inhibitors of the serine proteinases employing a novel amino acid-derived heterocyclic scaffold. Groutas WC; Kuang R; Venkataraman R; Epp JB; Ruan S; Prakash O Biochemistry; 1997 Apr; 36(16):4739-50. PubMed ID: 9125494 [TBL] [Abstract][Full Text] [Related]
5. Irreversible inhibition of serine proteases by peptide derivatives of (alpha-aminoalkyl)phosphonate diphenyl esters. Oleksyszyn J; Powers JC Biochemistry; 1991 Jan; 30(2):485-93. PubMed ID: 1988040 [TBL] [Abstract][Full Text] [Related]
6. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin s using the substrate activity screening method. Patterson AW; Wood WJ; Hornsby M; Lesley S; Spraggon G; Ellman JA J Med Chem; 2006 Oct; 49(21):6298-307. PubMed ID: 17034136 [TBL] [Abstract][Full Text] [Related]
7. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin. Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737 [TBL] [Abstract][Full Text] [Related]
8. Design and synthesis of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 1. Liu H; Tully DC; Epple R; Bursulaya B; Li J; Harris JL; Williams JA; Russo R; Tumanut C; Roberts MJ; Alper PB; He Y; Karanewsky DS Bioorg Med Chem Lett; 2005 Nov; 15(22):4979-84. PubMed ID: 16183279 [TBL] [Abstract][Full Text] [Related]
9. Amino acid-derived phthalimide and saccharin derivatives as inhibitors of human leukocyte elastase, cathepsin G, and proteinase 3. Groutas WC; Chong LS; Venkataraman R; Kuang R; Epp JB; Houser-Archield N; Huang H; Hoidal JR Arch Biochem Biophys; 1996 Aug; 332(2):335-40. PubMed ID: 8806743 [TBL] [Abstract][Full Text] [Related]
10. Novel potential mechanism-based inhibitors of human leukocyte elastase and cathepsin G: derivatives of isothiazolidin-3-one. Groutas WC; Chong LS; Venkataraman R Biochem Biophys Res Commun; 1993 Dec; 197(2):730-9. PubMed ID: 8267609 [TBL] [Abstract][Full Text] [Related]
11. [The classical Bowman-Birk soy inhibitor is an effective inhibitor of human granulocyte alpha-chymotrypsin and cathepsin G]. Gladysheva IP; Larionova NI; Gladyshev DP; Tikhonova TV; Kazanskaia NF Biokhimiia; 1994 Apr; 59(4):513-8. PubMed ID: 8018773 [TBL] [Abstract][Full Text] [Related]
12. Highly potent irreversible inhibitors of neutrophil elastase generated by selection from a randomized DNA-valine phosphonate library. Charlton J; Kirschenheuter GP; Smith D Biochemistry; 1997 Mar; 36(10):3018-26. PubMed ID: 9062133 [TBL] [Abstract][Full Text] [Related]
13. Development of sensitive cathepsin G fluorogenic substrate using combinatorial chemistry methods. Lesner A; Wysocka M; Guzow K; Wiczk W; Legowska A; Rolka K Anal Biochem; 2008 Apr; 375(2):306-12. PubMed ID: 18261971 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of cathepsin G by 2-amino-3,1-benzoxazin-4-ones: kinetic investigations and docking studies. Gütschow M; Kuerschner L; Pietsch M; Ambrozak A; Neumann U; Günther R; Hofmann HJ Arch Biochem Biophys; 2002 Jun; 402(2):180-91. PubMed ID: 12051662 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Mitsudo K; Jayakumar A; Henderson Y; Frederick MJ; Kang Y; Wang M; El-Naggar AK; Clayman GL Biochemistry; 2003 Apr; 42(13):3874-81. PubMed ID: 12667078 [TBL] [Abstract][Full Text] [Related]
16. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Pauly TA; Sulea T; Ammirati M; Sivaraman J; Danley DE; Griffor MC; Kamath AV; Wang IK; Laird ER; Seddon AP; Ménard R; Cygler M; Rath VL Biochemistry; 2003 Mar; 42(11):3203-13. PubMed ID: 12641451 [TBL] [Abstract][Full Text] [Related]
17. Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Palmer JT; Hirschbein BL; Cheung H; McCarter J; Janc JW; Yu ZW; Wesolowski G Bioorg Med Chem Lett; 2006 Jun; 16(11):2909-14. PubMed ID: 16546382 [TBL] [Abstract][Full Text] [Related]
18. New peptolides from the cyanobacterium Nostoc insulare as selective and potent inhibitors of human leukocyte elastase. Mehner C; Müller D; Kehraus S; Hautmann S; Gütschow M; König GM Chembiochem; 2008 Nov; 9(16):2692-703. PubMed ID: 18924217 [TBL] [Abstract][Full Text] [Related]
19. Binding pockets on the surface of human leukocyte elastase and human leukocyte cathepsin G. Implications to the design of inhibitors derived from human C-reactive protein. Yavin EJ; Eisenstein M; Fridkin M Biomed Pept Proteins Nucleic Acids; 1996-1997; 2(3):71-8. PubMed ID: 9575343 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism of the inhibition of cathepsin G by alpha 1-antichymotrypsin and alpha 1-proteinase inhibitor. Duranton J; Adam C; Bieth JG Biochemistry; 1998 Aug; 37(32):11239-45. PubMed ID: 9698370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]