These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18805924)

  • 21. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects.
    Wang F; Zeltwanger S; Yang IC; Nairn AC; Hwang TC
    J Gen Physiol; 1998 Mar; 111(3):477-90. PubMed ID: 9482713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC; Dousmanis AG; Nairn AC
    Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
    Gross CH; Abdul-Manan N; Fulghum J; Lippke J; Liu X; Prabhakar P; Brennan D; Willis MS; Faerman C; Connelly P; Raybuck S; Moore J
    J Biol Chem; 2006 Feb; 281(7):4058-68. PubMed ID: 16361259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High affinity ATP/ADP analogues as new tools for studying CFTR gating.
    Zhou Z; Wang X; Li M; Sohma Y; Zou X; Hwang TC
    J Physiol; 2005 Dec; 569(Pt 2):447-57. PubMed ID: 16223764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of CFTR's intrinsic adenylate kinase activity in gating of the Cl(-) channel.
    Randak CO; Welsh MJ
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):473-9. PubMed ID: 17965924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.
    Kim Y; Anderson MO; Park J; Lee MG; Namkung W; Verkman AS
    Mol Pharmacol; 2015 Oct; 88(4):689-96. PubMed ID: 26174774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CFTR gating II: Effects of nucleotide binding on the stability of open states.
    Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor.
    Broadbent SD; Ramjeesingh M; Bear CE; Argent BE; Linsdell P; Gray MA
    Pflugers Arch; 2015 Aug; 467(8):1783-94. PubMed ID: 25277268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of CFTR Cl- channel gating by ADP and ATP analogues.
    Schultz BD; Venglarik CJ; Bridges RJ; Frizzell RA
    J Gen Physiol; 1995 Mar; 105(3):329-61. PubMed ID: 7539480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP alters current fluctuations of cystic fibrosis transmembrane conductance regulator: evidence for a three-state activation mechanism.
    Venglarik CJ; Schultz BD; Frizzell RA; Bridges RJ
    J Gen Physiol; 1994 Jul; 104(1):123-46. PubMed ID: 7525859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of CFTR gating by permeant ions.
    Yeh HI; Yeh JT; Hwang TC
    J Gen Physiol; 2015 Jan; 145(1):47-60. PubMed ID: 25512598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The inhibition mechanism of non-phosphorylated Ser768 in the regulatory domain of cystic fibrosis transmembrane conductance regulator.
    Wang G
    J Biol Chem; 2011 Jan; 286(3):2171-82. PubMed ID: 21059651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.
    Muallem D; Vergani P
    Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):247-55. PubMed ID: 18957373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State-dependent regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gating by a high affinity Fe3+ bridge between the regulatory domain and cytoplasmic loop 3.
    Wang G
    J Biol Chem; 2010 Dec; 285(52):40438-47. PubMed ID: 20952391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating.
    Berger AL; Ikuma M; Hunt JF; Thomas PJ; Welsh MJ
    J Biol Chem; 2002 Jan; 277(3):2125-31. PubMed ID: 11788611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.