BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18806210)

  • 1. Nonapoptotic death of Saccharomyces cerevisiae cells that is stimulated by Hsp90 and inhibited by calcineurin and Cmk2 in response to endoplasmic reticulum stresses.
    Dudgeon DD; Zhang N; Ositelu OO; Kim H; Cunningham KW
    Eukaryot Cell; 2008 Dec; 7(12):2037-51. PubMed ID: 18806210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic architecture of Hsp90-dependent drug resistance.
    Cowen LE; Carpenter AE; Matangkasombut O; Fink GR; Lindquist S
    Eukaryot Cell; 2006 Dec; 5(12):2184-8. PubMed ID: 17056742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast.
    Xu H; Fang T; Yan H; Jiang L
    Cell Commun Signal; 2019 Jan; 17(1):7. PubMed ID: 30665402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitogen-activated protein kinase stimulation of Ca(2+) signaling is required for survival of endoplasmic reticulum stress in yeast.
    Bonilla M; Cunningham KW
    Mol Biol Cell; 2003 Oct; 14(10):4296-305. PubMed ID: 14517337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of calcineurin in response to endoplasmic reticulum stress.
    Bonilla M; Nastase KK; Cunningham KW
    EMBO J; 2002 May; 21(10):2343-53. PubMed ID: 12006487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90.
    LaFayette SL; Collins C; Zaas AK; Schell WA; Betancourt-Quiroz M; Gunatilaka AA; Perfect JR; Cowen LE
    PLoS Pathog; 2010 Aug; 6(8):e1001069. PubMed ID: 20865172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic control of antifungal drug resistance.
    Robbins N; Collins C; Morhayim J; Cowen LE
    Fungal Genet Biol; 2010 Feb; 47(2):81-93. PubMed ID: 19595784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations.
    Hill JA; Ammar R; Torti D; Nislow C; Cowen LE
    PLoS Genet; 2013 Apr; 9(4):e1003390. PubMed ID: 23593013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae.
    Heath VL; Shaw SL; Roy S; Cyert MS
    Eukaryot Cell; 2004 Jun; 3(3):695-704. PubMed ID: 15189990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling.
    Edlind T; Smith L; Henry K; Katiyar S; Nickels J
    Mol Microbiol; 2002 Oct; 46(1):257-68. PubMed ID: 12366848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae.
    Chen Y; Feldman DE; Deng C; Brown JA; De Giacomo AF; Gaw AF; Shi G; Le QT; Brown JM; Koong AC
    Mol Cancer Res; 2005 Dec; 3(12):669-77. PubMed ID: 16380504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin.
    Imai J; Yahara I
    Mol Cell Biol; 2000 Dec; 20(24):9262-70. PubMed ID: 11094077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae.
    Singh-Babak SD; Shekhar T; Smith AM; Giaever G; Nislow C; Cowen LE
    Mol Biosyst; 2012 Oct; 8(10):2575-84. PubMed ID: 22751784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast.
    Kim H; Kim A; Cunningham KW
    J Biol Chem; 2012 Jun; 287(23):19029-39. PubMed ID: 22511765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae.
    Fei W; Wang H; Fu X; Bielby C; Yang H
    Biochem J; 2009 Oct; 424(1):61-7. PubMed ID: 19708857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of N-glycosylation and inositol on the ER stress response in yeast Saccharomyces cerevisiae.
    Uchimura S; Sugiyama M; Nikawa J
    Biosci Biotechnol Biochem; 2005 Jul; 69(7):1274-80. PubMed ID: 16041130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.
    Cebulski J; Malouin J; Pinches N; Cascio V; Austriaco N
    PLoS One; 2011; 6(6):e20882. PubMed ID: 21673967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane.
    Rigamonti M; Groppi S; Belotti F; Ambrosini R; Filippi G; Martegani E; Tisi R
    Cell Calcium; 2015 Feb; 57(2):57-68. PubMed ID: 25573187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast molecular chaperone gene SSB2 is involved in the endoplasmic reticulum stress response.
    Zhao W; Cui HJ; Qiu KP; Zhou T; Hong XS; Liu XG
    Antonie Van Leeuwenhoek; 2019 Apr; 112(4):589-598. PubMed ID: 30382435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.