BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18806268)

  • 1. Role of the Per/Arnt/Sim domains in ligand-dependent transformation of the aryl hydrocarbon receptor.
    Soshilov A; Denison MS
    J Biol Chem; 2008 Nov; 283(47):32995-3005. PubMed ID: 18806268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitional States in Ligand-Dependent Transformation of the Aryl Hydrocarbon Receptor into Its DNA-Binding Form.
    Soshilov AA; Motta S; Bonati L; Denison MS
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural modeling of the AhR:ARNT complex in the bHLH-PASA-PASB region elucidates the key determinants of dimerization.
    Corrada D; Denison MS; Bonati L
    Mol Biosyst; 2017 May; 13(5):981-990. PubMed ID: 28393157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand displaces heat shock protein 90 from overlapping binding sites within the aryl hydrocarbon receptor ligand-binding domain.
    Soshilov A; Denison MS
    J Biol Chem; 2011 Oct; 286(40):35275-82. PubMed ID: 21856752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT).
    Reisz-Porszasz S; Probst MR; Fukunaga BN; Hankinson O
    Mol Cell Biol; 1994 Sep; 14(9):6075-86. PubMed ID: 8065341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of functional domains of the aryl hydrocarbon receptor.
    Fukunaga BN; Probst MR; Reisz-Porszasz S; Hankinson O
    J Biol Chem; 1995 Dec; 270(49):29270-8. PubMed ID: 7493958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.
    Corrada D; Soshilov AA; Denison MS; Bonati L
    PLoS Comput Biol; 2016 Jun; 12(6):e1004981. PubMed ID: 27295348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the coiled-coil coactivator (CoCoA) in aryl hydrocarbon receptor-mediated transcription.
    Kim JH; Stallcup MR
    J Biol Chem; 2004 Nov; 279(48):49842-8. PubMed ID: 15383530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodimers of bHLH-PAS protein fragments derived from AhR, AhRR, and Arnt prepared by co-expression in Escherichia coli: characterization of their DNA binding activity and preparation of a DNA complex.
    Kikuchi Y; Ohsawa S; Mimura J; Ema M; Takasaki C; Sogawa K; Fujii-Kuriyama Y
    J Biochem; 2003 Jul; 134(1):83-90. PubMed ID: 12944374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization.
    Meyer BK; Perdew GH
    Biochemistry; 1999 Jul; 38(28):8907-17. PubMed ID: 10413464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt.
    Lees MJ; Whitelaw ML
    Mol Cell Biol; 1999 Aug; 19(8):5811-22. PubMed ID: 10409767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis.
    Pandini A; Denison MS; Song Y; Soshilov AA; Bonati L
    Biochemistry; 2007 Jan; 46(3):696-708. PubMed ID: 17223691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR.
    Hao N; Whitelaw ML; Shearwin KE; Dodd IB; Chapman-Smith A
    Nucleic Acids Res; 2011 May; 39(9):3695-709. PubMed ID: 21245039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of aryl hydrocarbon receptor nuclear translocator interactions with aryl hydrocarbon receptor in the yeast two-hybrid system.
    Yamaguchi Y; Kuo MT
    Biochem Pharmacol; 1995 Oct; 50(8):1295-302. PubMed ID: 7488247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of heat shock protein 90 dissociation in mediating agonist-induced activation of the aryl hydrocarbon receptor.
    Heid SE; Pollenz RS; Swanson HI
    Mol Pharmacol; 2000 Jan; 57(1):82-92. PubMed ID: 10617682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two murine homologs of the Drosophila single-minded protein that interact with the mouse aryl hydrocarbon receptor nuclear translocator protein.
    Probst MR; Fan CM; Tessier-Lavigne M; Hankinson O
    J Biol Chem; 1997 Feb; 272(7):4451-7. PubMed ID: 9020169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent transactivation domains of the Ah receptor and the Ah receptor nuclear translocator map to their carboxyl termini.
    Jain S; Dolwick KM; Schmidt JV; Bradfield CA
    J Biol Chem; 1994 Dec; 269(50):31518-24. PubMed ID: 7989319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Aryl Hydrocarbon Receptor-Mediated Gene Activation.
    Schulte KW; Green E; Wilz A; Platten M; Daumke O
    Structure; 2017 Jul; 25(7):1025-1033.e3. PubMed ID: 28602820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation.
    Whitelaw ML; Gustafsson JA; Poellinger L
    Mol Cell Biol; 1994 Dec; 14(12):8343-55. PubMed ID: 7969169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis.
    Henry EC; Gasiewicz TA
    Mol Pharmacol; 2003 Feb; 63(2):392-400. PubMed ID: 12527811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.