BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 18806797)

  • 1. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism.
    Lu C; Smith AM; Fuchs RT; Ding F; Rajashankar K; Henkin TM; Ke A
    Nat Struct Mol Biol; 2008 Oct; 15(10):1076-83. PubMed ID: 18806797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SAM-responsive S(MK) box is a reversible riboswitch.
    Smith AM; Fuchs RT; Grundy FJ; Henkin TM
    Mol Microbiol; 2010 Dec; 78(6):1393-402. PubMed ID: 21143313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase.
    Fuchs RT; Grundy FJ; Henkin TM
    Nat Struct Mol Biol; 2006 Mar; 13(3):226-33. PubMed ID: 16491091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA.
    Fuchs RT; Grundy FJ; Henkin TM
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4876-80. PubMed ID: 17360376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch.
    Priyakumar UD
    J Phys Chem B; 2010 Aug; 114(30):9920-5. PubMed ID: 20614931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch.
    Lu C; Smith AM; Ding F; Chowdhury A; Henkin TM; Ke A
    J Mol Biol; 2011 Jun; 409(5):786-99. PubMed ID: 21549712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAM recognition and conformational switching mechanism in the Bacillus subtilis yitJ S box/SAM-I riboswitch.
    Lu C; Ding F; Chowdhury A; Pradhan V; Tomsic J; Holmes WM; Henkin TM; Ke A
    J Mol Biol; 2010 Dec; 404(5):803-18. PubMed ID: 20951706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.
    Doshi U; Kelley JM; Hamelberg D
    RNA; 2012 Feb; 18(2):300-7. PubMed ID: 22194311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and ligand-induced folding of the SAM/SAH riboswitch.
    Huang L; Liao TW; Wang J; Ha T; Lilley DMJ
    Nucleic Acids Res; 2020 Jul; 48(13):7545-7556. PubMed ID: 32520325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.
    Weickhmann AK; Keller H; Duchardt-Ferner E; Strebitzer E; Juen MA; Kremser J; Wurm JP; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2018 Oct; 12(2):329-334. PubMed ID: 30051308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA.
    Tang DJ; Du X; Shi Q; Zhang JL; He YP; Chen YM; Ming Z; Wang D; Zhong WY; Liang YW; Liu JY; Huang JM; Zhong YS; An SQ; Gu H; Tang JL
    Nat Commun; 2020 Jun; 11(1):2794. PubMed ID: 32493973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a mutation in the Bacillus subtilis S-adenosylmethionine synthetase gene that results in derepression of S-box gene expression.
    McDaniel BA; Grundy FJ; Kurlekar VP; Tomsic J; Henkin TM
    J Bacteriol; 2006 May; 188(10):3674-81. PubMed ID: 16672621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational heterogeneity of the SAM-I riboswitch transcriptional ON state: a chaperone-like role for S-adenosyl methionine.
    Huang W; Kim J; Jha S; Aboul-Ela F
    J Mol Biol; 2012 May; 418(5):331-49. PubMed ID: 22425639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incoherent dual regulation by a SAM-II riboswitch controlling translation at a distance.
    Scheuer R; Dietz T; Kretz J; Hadjeras L; McIntosh M; Evguenieva-Hackenberg E
    RNA Biol; 2022 Jan; 19(1):980-995. PubMed ID: 35950733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAM-VI riboswitch structure and signature for ligand discrimination.
    Sun A; Gasser C; Li F; Chen H; Mair S; Krasheninina O; Micura R; Ren A
    Nat Commun; 2019 Dec; 10(1):5728. PubMed ID: 31844059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of the SAM/SAH-binding riboswitch.
    Weickhmann AK; Keller H; Wurm JP; Strebitzer E; Juen MA; Kremser J; Weinberg Z; Kreutz C; Duchardt-Ferner E; Wöhnert J
    Nucleic Acids Res; 2019 Mar; 47(5):2654-2665. PubMed ID: 30590743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations.
    Chen J; Zeng Q; Wang W; Sun H; Hu G
    J Chem Inf Model; 2022 Dec; 62(23):6118-6132. PubMed ID: 36440874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and ligand binding of the SAM-V riboswitch.
    Huang L; Lilley DMJ
    Nucleic Acids Res; 2018 Jul; 46(13):6869-6879. PubMed ID: 29931337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
    Hu G; Zhou HX
    Commun Biol; 2023 Jul; 6(1):791. PubMed ID: 37524918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.