These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 18806823)
1. CSR1 induces cell death through inactivation of CPSF3. Zhu ZH; Yu YP; Shi YK; Nelson JB; Luo JH Oncogene; 2009 Jan; 28(1):41-51. PubMed ID: 18806823 [TBL] [Abstract][Full Text] [Related]
2. Cellular stress response 1 down-regulates the expression of epidermal growth factor receptor and platelet-derived growth factor receptor through inactivation of splicing factor 3A3. Zuo ZH; Yu YP; Martin A; Luo JH Mol Carcinog; 2017 Feb; 56(2):315-324. PubMed ID: 27148859 [TBL] [Abstract][Full Text] [Related]
3. Interaction of CSR1 with XIAP reverses inhibition of caspases and accelerates cell death. Zheng ZL; Tan LZ; Yu YP; Michalopoulos G; Luo JH Am J Pathol; 2012 Aug; 181(2):463-71. PubMed ID: 22683311 [TBL] [Abstract][Full Text] [Related]
4. CSR1 suppresses tumor growth and metastasis of human hepatocellular carcinoma via inhibition of HPIP. Jiang L; Hu G; Chen FF; Du XY; Liu B; Liu C Eur Rev Med Pharmacol Sci; 2017 Oct; 21(17):3813-3820. PubMed ID: 28975986 [TBL] [Abstract][Full Text] [Related]
5. Sumoylation Negatively Regulates CSR1-Dependent Prostate Cancer Cell Death. Luo HR; Liu Y; Wan XD; Li JL; Wu M; Zhang QM; Wu DL; Zhao X; Wang TR Cell Physiol Biochem; 2018; 46(5):1861-1867. PubMed ID: 29705808 [TBL] [Abstract][Full Text] [Related]
6. Oncogenic Activity of miR-650 in Prostate Cancer Is Mediated by Suppression of CSR1 Expression. Zuo ZH; Yu YP; Ding Y; Liu S; Martin A; Tseng G; Luo JH Am J Pathol; 2015 Jul; 185(7):1991-9. PubMed ID: 25956032 [TBL] [Abstract][Full Text] [Related]
7. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Wall RJ; Rico E; Lukac I; Zuccotto F; Elg S; Gilbert IH; Freund Y; Alley MRK; Field MC; Wyllie S; Horn D Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9616-9621. PubMed ID: 30185555 [TBL] [Abstract][Full Text] [Related]
8. Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3. Tao Y; Budhipramono A; Huang J; Fang M; Xie S; Kim J; Khivansara V; Dominski Z; Tong L; De Brabander JK; Nijhawan D Cell Chem Biol; 2024 Jan; 31(1):139-149.e14. PubMed ID: 37967558 [TBL] [Abstract][Full Text] [Related]
9. CPSF3-dependent pre-mRNA processing as a druggable node in AML and Ewing's sarcoma. Ross NT; Lohmann F; Carbonneau S; Fazal A; Weihofen WA; Gleim S; Salcius M; Sigoillot F; Henault M; Carl SH; RodrÃguez-Molina JB; Miller HR; Brittain SM; Murphy J; Zambrowski M; Boynton G; Wang Y; Chen A; Molind GJ; Wilbertz JH; Artus-Revel CG; Jia M; Akinjiyan FA; Turner J; Knehr J; Carbone W; Schuierer S; Reece-Hoyes JS; Xie K; Saran C; Williams ET; Roma G; Spencer M; Jenkins J; George EL; Thomas JR; Michaud G; Schirle M; Tallarico J; Passmore LA; Chao JA; Beckwith REJ Nat Chem Biol; 2020 Jan; 16(1):50-59. PubMed ID: 31819276 [TBL] [Abstract][Full Text] [Related]
10. JTE-607, a multiple cytokine production inhibitor, targets CPSF3 and inhibits pre-mRNA processing. Kakegawa J; Sakane N; Suzuki K; Yoshida T Biochem Biophys Res Commun; 2019 Oct; 518(1):32-37. PubMed ID: 31399191 [TBL] [Abstract][Full Text] [Related]
11. CSR1 suppresses tumor growth and metastasis of prostate cancer. Yu G; Tseng GC; Yu YP; Gavel T; Nelson J; Wells A; Michalopoulos G; Kokkinakis D; Luo JH Am J Pathol; 2006 Feb; 168(2):597-607. PubMed ID: 16436673 [TBL] [Abstract][Full Text] [Related]
12. CPSF3 inhibition blocks pancreatic cancer cell proliferation through disruption of core histone mRNA processing. Alahmari AA; Chaubey AH; Jonnakuti VS; Tisdale AA; Schwarz CD; Cornwell AC; Maraszek KE; Paterson EJ; Kim M; Venkat S; Gomez EC; Wang J; Gurova KV; Yalamanchili HK; Feigin ME RNA; 2024 Feb; 30(3):281-297. PubMed ID: 38191171 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic targeting of CPSF3-dependent transcriptional termination in ovarian cancer. Shen P; Ye K; Xiang H; Zhang Z; He Q; Zhang X; Cai MC; Chen J; Sun Y; Lin L; Qi C; Zhang M; Cheung LWT; Shi T; Yin X; Li Y; Di W; Zang R; Tan L; Zhuang G Sci Adv; 2023 Nov; 9(47):eadj0123. PubMed ID: 37992178 [TBL] [Abstract][Full Text] [Related]
14. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Dominski Z; Yang XC; Purdy M; Wagner EJ; Marzluff WF Mol Cell Biol; 2005 Feb; 25(4):1489-500. PubMed ID: 15684398 [TBL] [Abstract][Full Text] [Related]
15. On the Cutting Edge: Regulation and Therapeutic Potential of the mRNA 3' End Nuclease. Liu H; Moore CL Trends Biochem Sci; 2021 Sep; 46(9):772-784. PubMed ID: 33941430 [TBL] [Abstract][Full Text] [Related]
16. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Bercovich N; Levin MJ; Vazquez MP Biochem Biophys Res Commun; 2009 Mar; 380(4):850-5. PubMed ID: 19338765 [TBL] [Abstract][Full Text] [Related]
17. CPSF3 is a promising prognostic biomarker and predicts recurrence of non-small cell lung cancer. Ning Y; Liu W; Guan X; Xie X; Zhang Y Oncol Lett; 2019 Sep; 18(3):2835-2844. PubMed ID: 31452762 [TBL] [Abstract][Full Text] [Related]
18. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls Swale C; Bougdour A; Gnahoui-David A; Tottey J; Georgeault S; Laurent F; Palencia A; Hakimi MA Sci Transl Med; 2019 Nov; 11(517):. PubMed ID: 31694928 [No Abstract] [Full Text] [Related]
19. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response. Oguro A; Koyama C; Xu J; Imaoka S Biochem Biophys Res Commun; 2014 Feb; 445(1):43-7. PubMed ID: 24491563 [TBL] [Abstract][Full Text] [Related]
20. RBBP6 maintains glioblastoma stem cells through CPSF3-dependent alternative polyadenylation. Lin P; Chen W; Long Z; Yu J; Yang J; Xia Z; Wu Q; Min X; Tang J; Cui Y; Liu F; Wang C; Zheng J; Li W; Rich JN; Li L; Xie Q Cell Discov; 2024 Mar; 10(1):32. PubMed ID: 38503731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]