These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18806841)

  • 1. Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Appl Opt; 2008 Sep; 47(27):4849-55. PubMed ID: 18806841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Opt Express; 2010 Jan; 18(2):1389-97. PubMed ID: 20173966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetically induced transparency and optical switching in a rubidium cascade system.
    Clarke J; Chen H; van Wijngaarden WA
    Appl Opt; 2001 Apr; 40(12):2047-51. PubMed ID: 18357209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurement of the frequency offset of the laser based on electromagnetically induced transparency.
    Ren S; Tang Y; Yang C; Wang S; Zhou H
    Appl Opt; 2024 May; 63(15):4219-4225. PubMed ID: 38856516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superluminal propagation of pulsed pseudo-thermal light in atomic vapor.
    Bae IH; Cho YW; Lee HJ; Kim YH; Moon HS
    Opt Express; 2010 Sep; 18(19):19693-9. PubMed ID: 20940864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetically induced absorption with sub-kHz spectral width in a paraffin-coated Rb vapor cell.
    Kim HJ; Moon HS
    Opt Express; 2011 Jan; 19(1):168-74. PubMed ID: 21263554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced absorption in Rb atoms with circular polarization of laser beams: Effects of neighboring transitions.
    Jadoon ZAS; Ul Hassan A; Noh HR; Kim JT
    Heliyon; 2022 Nov; 8(11):e11752. PubMed ID: 36439731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-field sensing via electromagnetically induced absorption of Rb irradiated by three-color infrared lasers.
    You SH; Cai MH; Zhang SS; Xu ZS; Liu HP
    Opt Express; 2022 May; 30(10):16619-16629. PubMed ID: 36221500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.
    Lee YS; Moon HS
    Opt Express; 2014 Jun; 22(13):15941-8. PubMed ID: 24977849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of photon number statistics from coupling light to stored and retrieved probe light.
    Bae IH; Moon HS
    Opt Express; 2012 Nov; 20(24):26308-16. PubMed ID: 23187485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagating multi-channel four-wave mixing process in the modulated moving photonic band gap.
    Hu M; Qin Z; Che J; Zhang Y
    Opt Express; 2020 Oct; 28(22):33448-33455. PubMed ID: 33115007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching from "absorption within transparency" to "transparency within transparency" in an electromagnetically induced absorption dominated transition.
    Dahl K; Molella LS; Rinkleff RH; Danzmann K
    Opt Lett; 2008 May; 33(9):983-5. PubMed ID: 18451960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collimated blue and infrared beams generated by two-photon excitation in Rb vapor.
    Sell JF; Gearba MA; DePaola BD; Knize RJ
    Opt Lett; 2014 Feb; 39(3):528-31. PubMed ID: 24487857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency.
    Wang G; Cen L; Qu Y; Xue Y; Wu JH; Gao JY
    Opt Express; 2011 Oct; 19(22):21614-9. PubMed ID: 22109010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of diffraction pattern in two-dimensional optically induced atomic lattice.
    Yuan J; Wu C; Wang L; Chen G; Jia S
    Opt Lett; 2019 Sep; 44(17):4123-4126. PubMed ID: 31465344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationary light pulses in cold atomic media and without Bragg gratings.
    Lin YW; Liao WT; Peters T; Chou HC; Wang JS; Cho HW; Kuan PC; Yu IA
    Phys Rev Lett; 2009 May; 102(21):213601. PubMed ID: 19519104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pole analysis of EIT-AT spectrum with Rydberg atoms.
    Shi M; Jiao Y; Zhao J
    Opt Express; 2021 Nov; 29(23):37253-37261. PubMed ID: 34808802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency.
    Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S
    Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.
    Moon HS; Noh HR
    Opt Express; 2013 Mar; 21(6):7447-55. PubMed ID: 23546128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.