These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 18806868)
1. Hole-assisted lightguide fibers with small negative dispersion and low dispersion slope. Hu DJ; Shum P; Ren G; Lu C Appl Opt; 2008 Sep; 47(27):5061-4. PubMed ID: 18806868 [TBL] [Abstract][Full Text] [Related]
2. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission. Wu J; Chen L; Li Q; Wu W; Sun K; Wu X Appl Opt; 2011 Jul; 50(20):3538-46. PubMed ID: 21743564 [TBL] [Abstract][Full Text] [Related]
3. Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss. Hasegawa T; Sasaoka E; Onishi M; Nishimura M; Tsuji Y; Koshiba M Opt Express; 2001 Dec; 9(13):681-6. PubMed ID: 19424308 [TBL] [Abstract][Full Text] [Related]
4. Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers. Pande K; Pal BP Appl Opt; 2003 Jul; 42(19):3785-91. PubMed ID: 12868816 [TBL] [Abstract][Full Text] [Related]
5. Proposal for optical fiber designs with ultrahigh effective area and small bending loss applicable to long haul communications. Oskouei MS; Makouei S; Rostami A; Kanani ZD Appl Opt; 2007 Sep; 46(25):6330-9. PubMed ID: 17805370 [TBL] [Abstract][Full Text] [Related]
6. Characterization of microstructured optical fibers for wideband dispersion compensation. Poli F; Cucinotta A; Fuochi M; Selleri S; Vincetti L J Opt Soc Am A Opt Image Sci Vis; 2003 Oct; 20(10):1958-62. PubMed ID: 14570109 [TBL] [Abstract][Full Text] [Related]
7. Tunable chromatic dispersion and dispersion slope compensator using a planar lightwave circuit lattice-form filter. Takiguchi K; Takahashi H; Shibata T Opt Lett; 2008 Jun; 33(11):1243-5. PubMed ID: 18516188 [TBL] [Abstract][Full Text] [Related]
8. Fiber designs with significantly reduced nonlinearity for very long distance transmission. Hattori HT; Safaai-Jazi A Appl Opt; 1998 May; 37(15):3190-7. PubMed ID: 18273268 [TBL] [Abstract][Full Text] [Related]
9. Fast and broadband fiber dispersion measurement with dense wavelength sampling. Ponzo GM; Petrovich MN; Feng X; Horak P; Poletti F; Petropoulos P; Richardson DJ Opt Express; 2014 Jan; 22(1):943-53. PubMed ID: 24515054 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependence of chromatic dispersion in various types of optical fiber. Kato T; Koyano Y; Nishimura M Opt Lett; 2000 Aug; 25(16):1156-8. PubMed ID: 18066152 [TBL] [Abstract][Full Text] [Related]
11. Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands. Hasan MR; Hasan MI; Anower MS Appl Opt; 2015 Nov; 54(32):9456-61. PubMed ID: 26560773 [TBL] [Abstract][Full Text] [Related]
14. Characterizing short dispersion-length fiber via dispersive virtual reference interferometry. Galle MA; Zhu EY; Saini SS; Mohammed WS; Qian L Opt Express; 2014 Jun; 22(12):14275-84. PubMed ID: 24977525 [TBL] [Abstract][Full Text] [Related]
15. Dispersion properties of square-lattice photonic crystal fibers. Bouk A; Cucinotta A; Poli F; Selleri S Opt Express; 2004 Mar; 12(5):941-6. PubMed ID: 19474905 [TBL] [Abstract][Full Text] [Related]
16. Photonic crystal fiber for dispersion compensation. Zhao X; Zhou G; Li S; Liu Z; Wei D; Hou Z; Hou L Appl Opt; 2008 Oct; 47(28):5190-6. PubMed ID: 18830310 [TBL] [Abstract][Full Text] [Related]
17. Gain and bandwidth investigation in a near-zero ultra-flat dispersion PCF for optical parametric amplification around the communication wavelength. Maji PS; Chaudhuri PR Appl Opt; 2015 Apr; 54(11):3263-72. PubMed ID: 25967312 [TBL] [Abstract][Full Text] [Related]
18. Real-time polarization mode dispersion monitoring system for a multiple-erbium-doped fiber amplifier, dense wavelength division multiplexing optical fiber transmission by amplified spontaneous emission modulation and acousto-optic tunable fiber scanning techniques. Tseng BJ; Tarn CW Appl Opt; 2009 Mar; 48(7):C92-7. PubMed ID: 19252622 [TBL] [Abstract][Full Text] [Related]
19. Large-effective-area dispersion-compensating fiber design based on dual-core microstructure. Prabhakar G; Peer A; Rastogi V; Kumar A Appl Opt; 2013 Jul; 52(19):4505-9. PubMed ID: 23842244 [TBL] [Abstract][Full Text] [Related]
20. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers. Saitoh K; Varshney SK; Koshiba M Opt Express; 2007 Dec; 15(26):17724-35. PubMed ID: 19551069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]