These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18807198)

  • 1. Conformational signatures of 13C chemical shifts in RNA ribose.
    Ohlenschläger O; Haumann S; Ramachandran R; Görlach M
    J Biomol NMR; 2008 Oct; 42(2):139-42. PubMed ID: 18807198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of 13C chemical shifts in rna nucleosides: structure-13C chemical shift relationships.
    Rossi P; Harbison GS
    J Magn Reson; 2001 Jul; 151(1):1-8. PubMed ID: 11444931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation.
    Duchardt E; Schwalbe H
    J Biomol NMR; 2005 Aug; 32(4):295-308. PubMed ID: 16211483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternate-site isotopic labeling of ribonucleotides for NMR studies of ribose conformational dynamics in RNA.
    Johnson JE; Julien KR; Hoogstraten CG
    J Biomol NMR; 2006 Aug; 35(4):261-74. PubMed ID: 16937241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets.
    Aeschbacher T; Schubert M; Allain FH
    J Biomol NMR; 2012 Feb; 52(2):179-90. PubMed ID: 22252483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of RNA 1H and 13C chemical shifts: a structure based approach.
    Frank AT; Bae SH; Stelzer AC
    J Phys Chem B; 2013 Oct; 117(43):13497-506. PubMed ID: 24033307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of 13C NMR chemical shifts on conformations of rna nucleosides and nucleotides.
    Ebrahimi M; Rossi P; Rogers C; Harbison GS
    J Magn Reson; 2001 May; 150(1):1-9. PubMed ID: 11330976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribose 2'-F labeling: a simple tool for the characterization of RNA secondary structure equilibria by 19F NMR spectroscopy.
    Kreutz C; Kählig H; Konrat R; Micura R
    J Am Chem Soc; 2005 Aug; 127(33):11558-9. PubMed ID: 16104705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics-Function Analysis in Catalytic RNA Using NMR Spin Relaxation and Conformationally Restricted Nucleotides.
    Hoogstraten CG; Terrazas M; Aviñó A; White NA; Sumita M
    Methods Mol Biol; 2021; 2167():183-202. PubMed ID: 32712921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C-detection in RNA bases: revealing structure-chemical shift relationships.
    Farès C; Amata I; Carlomagno T
    J Am Chem Soc; 2007 Dec; 129(51):15814-23. PubMed ID: 18052161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-13 NMR in conformational analysis of nucleic acid fragments. Heteronuclear chemical shift correlation spectroscopy of RNA constituents.
    Lankhorst PP; Erkelens C; Haasnoot CA; Altona C
    Nucleic Acids Res; 1983 Oct; 11(20):7215-30. PubMed ID: 6195595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ribose sugar conformational switch in the LTR-retrotransposon Ty3 polypurine tract-containing RNA/DNA hybrid.
    Yi-Brunozzi HY; Brabazon DM; Lener D; Le Grice SF; Marino JP
    J Am Chem Soc; 2005 Nov; 127(47):16344-5. PubMed ID: 16305191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides.
    Richter C; Kovacs H; Buck J; Wacker A; Fürtig B; Bermel W; Schwalbe H
    J Biomol NMR; 2010 Aug; 47(4):259-69. PubMed ID: 20544375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of 2'-ribose substitutions in UUCG tetraloops.
    Williams DJ; Boots JL; Hall KB
    RNA; 2001 Jan; 7(1):44-53. PubMed ID: 11214179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geometrical parametrization of C1'-C5' RNA ribose chemical shifts calculated by density functional theory.
    Suardíaz R; Sahakyan AB; Vendruscolo M
    J Chem Phys; 2013 Jul; 139(3):034101. PubMed ID: 23883004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab-inito quantum mechanical calculations of NMR chemical shifts in nucleic acids constituents. II. Conformational dependence of the 1H and 13C chemical shifts in the ribose.
    Giessner-Prettre C
    J Biomol Struct Dyn; 1985 Aug; 3(1):145-60. PubMed ID: 3917012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic cycle between DNA and RNA constituents for conformation of the sugar ring from nuclear magnetic resonance study.
    Remin M
    J Biomol Struct Dyn; 1997 Oct; 15(2):251-64. PubMed ID: 9399153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D C(CC)H TOCSY experiment for assigning protons and carbons in uniformly 13C- and selectively 2H-labeled RNA.
    Dayie KT; Tolbert TJ; Williamson JR
    J Magn Reson; 1998 Jan; 130(1):97-101. PubMed ID: 9469903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the DNA sugar pucker using 13C NMR spectroscopy.
    Santos RA; Tang P; Harbison GS
    Biochemistry; 1989 Nov; 28(24):9372-8. PubMed ID: 2611236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.