These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 18807265)
1. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites. Kobayashi S; Sakamoto K J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265 [TBL] [Abstract][Full Text] [Related]
2. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites. Yamadi S; Kobayashi S J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650 [TBL] [Abstract][Full Text] [Related]
3. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid. Ma F; Chen S; Liu P; Geng F; Li W; Liu X; He D; Pan D Mater Sci Eng C Mater Biol Appl; 2016 May; 62():407-13. PubMed ID: 26952440 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. Flauder S; Sajzew R; Müller FA ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730 [TBL] [Abstract][Full Text] [Related]
5. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Shikinami Y; Okuno M Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712 [TBL] [Abstract][Full Text] [Related]
6. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers. Wang J; Qu L; Meng X; Gao J; Li H; Wen G Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373 [TBL] [Abstract][Full Text] [Related]
7. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Lin FH; Chen TM; Lin CP; Lee CJ Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889 [TBL] [Abstract][Full Text] [Related]
8. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures]. Li X; Zou J; Zhu G; Qi X; Pu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897 [TBL] [Abstract][Full Text] [Related]
9. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate. Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066 [TBL] [Abstract][Full Text] [Related]
10. Fibre reinforced bioresorbable composites for spinal surgery. Huttunen M; Ashammakhi N; Törmälä P; Kellomäki M Acta Biomater; 2006 Sep; 2(5):575-87. PubMed ID: 16807156 [TBL] [Abstract][Full Text] [Related]
11. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
12. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties. Zheng X; Zhou S; Yu X; Li X; Feng B; Qu S; Weng J J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):170-80. PubMed ID: 18161831 [TBL] [Abstract][Full Text] [Related]
13. Acrylic bone cements modified with beta-TCP particles encapsulated with poly(ethylene glycol). Vázquez B; Ginebra MP; Gil X; Planell JA; San Román J Biomaterials; 2005 Jul; 26(20):4309-16. PubMed ID: 15683655 [TBL] [Abstract][Full Text] [Related]
14. [Manufacture and study of porous poly(l-lactic acid) (PLLA)/beta-tricalcium phosphate (beta-TCP) composite]. Chen R; Chen H; Han J; Zhou D; Zheng C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):177-80. PubMed ID: 11450528 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials. Doyle H; Lohfeld S; McHugh P Med Eng Phys; 2015 Aug; 37(8):767-76. PubMed ID: 26054804 [TBL] [Abstract][Full Text] [Related]
16. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility. Swain SK; Gotman I; Unger R; Gutmanas EY Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():88-95. PubMed ID: 28576063 [TBL] [Abstract][Full Text] [Related]
17. Osteointegration of PLGA implants with nanostructured or microsized β-TCP particles in a minipig model. Kulkova J; Moritz N; Suokas EO; Strandberg N; Leino KA; Laitio TT; Aro HT J Mech Behav Biomed Mater; 2014 Dec; 40():190-200. PubMed ID: 25241283 [TBL] [Abstract][Full Text] [Related]
18. Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment. Imai Y; Nagai M; Watanabe M J Biomater Sci Polym Ed; 1999; 10(4):421-32. PubMed ID: 10227465 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering. Liu D; Zhuang J; Shuai C; Peng S Biofabrication; 2013 Jun; 5(2):025005. PubMed ID: 23458914 [TBL] [Abstract][Full Text] [Related]
20. Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase. Swain SK; Gotman I; Unger R; Kirkpatrick CJ; Gutmanas EY J Mech Behav Biomed Mater; 2016 Jan; 53():434-444. PubMed ID: 26409234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]