These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1880750)

  • 1. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs.
    Lemaire ED; Lamontagne M; Barclay HW; John T; Martel G
    J Rehabil Res Dev; 1991; 28(3):51-8. PubMed ID: 1880750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the performance parameters of a wheelchair on the changes in the position of the centre of gravity of the human body in dynamic condition.
    Wieczorek B; Kukla M
    PLoS One; 2019; 14(12):e0226013. PubMed ID: 31809515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheelchair prescription: an analysis of factors that affect mobility and performance.
    Brubaker CE
    J Rehabil Res Dev; 1986 Oct; 23(4):19-26. PubMed ID: 3820118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual wheelchair downhill stability: an analysis of factors affecting tip probability.
    Thomas L; Borisoff J; Sparrey CJ
    J Neuroeng Rehabil; 2018 Nov; 15(1):95. PubMed ID: 30400911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Relationships Between Manual Wheelchair Steering and the Position of the Human Body's Center of Gravity.
    Wieczorek B; Kukla M
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 32110801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of the Human Body Position Changes During Wheelchair Propelling on Motion Resistance Force: A Preliminary Study.
    Wieczorek B; Kukla M; Warguła Ł; Rybarczyk D; Giedrowicz M; Górecki J
    J Biomech Eng; 2021 Aug; 143(8):. PubMed ID: 33764412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of wheelchair rolling resistance with a handle bar push technique.
    van der Woude LH; Geurts C; Winkelman H; Veeger HE
    J Med Eng Technol; 2003; 27(6):249-58. PubMed ID: 14602516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a software-based stability assessment system for wheelchairs and their occupants.
    Caldicott SJ; Shapcott N
    J Med Eng Technol; 2008; 32(6):440-7. PubMed ID: 18608789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of wheelchair drag resistance using a coasting deceleration technique.
    Hoffman MD; Millet GY; Hoch AZ; Candau RB
    Am J Phys Med Rehabil; 2003 Nov; 82(11):880-9; quiz 890-2. PubMed ID: 14566157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair tire rolling resistance and fatigue.
    Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1985 Jul; 22(3):25-41. PubMed ID: 3835263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of wheelchair tire rolling resistance using dynamometer-based coast-down tests.
    Kwarciak AM; Yarossi M; Ramanujam A; Dyson-Hudson TA; Sisto SA
    J Rehabil Res Dev; 2009; 46(7):931-8. PubMed ID: 20104415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Braking electric-powered wheelchairs: effect of braking method, seatbelt, and legrests.
    Cooper RA; Dvorznak MJ; O'Connor TJ; Boninger ML; Jones DK
    Arch Phys Med Rehabil; 1998 Oct; 79(10):1244-9. PubMed ID: 9779678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
    Lin JT; Huang M; Sprigle S
    J Rehabil Res Dev; 2015; 52(7):763-74. PubMed ID: 26745011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency and Rolling Resistance in Manual Wheelchair Propulsion.
    Hashizume T; Kitagawa H; Ueda H; Yoneda I; Booka M
    Stud Health Technol Inform; 2017; 242():778-781. PubMed ID: 28873884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manual wheelchair propulsion by people with hemiplegia: within-participant comparisons of forward versus backward techniques.
    Charbonneau R; Kirby RL; Thompson K
    Arch Phys Med Rehabil; 2013 Sep; 94(9):1707-13. PubMed ID: 23500180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C; Vaslin P; Lavaste F; de Saint Remy N; Cid M
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical effects of rear-wheel camber on wheelchairs.
    Trudel G; Kirby RL; Bell AC
    Assist Technol; 1995; 7(2):79-86. PubMed ID: 10159861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theory of wheelchair wheelie performance.
    Kauzlarich JJ; Thacker JG
    J Rehabil Res Dev; 1987; 24(2):67-80. PubMed ID: 3585785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development and testing of a system for wheelchair stability measurement.
    Stefanov D; Avtanski A; Shapcott N; Magee P; Dryer P; Fielden S; Heelis M; Evans J; Moody L
    Med Eng Phys; 2015 Nov; 37(11):1061-9. PubMed ID: 26403319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of caster types on global rolling resistance in manual wheelchairs on indoor and outdoor surfaces.
    Chan FHN; Eshraghi M; Alhazmi MA; Sawatzky BJ
    Assist Technol; 2018; 30(4):176-182. PubMed ID: 28590160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.