BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18807988)

  • 1. [Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation].
    Wu J; Zhan X; Liu H; Zheng Z
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1035-9. PubMed ID: 18807988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of nitrogen source NH4 Cl concentration on curdlan production in Alcaligenes faecalis].
    Sun YS; Wang L; Zhan XB; Zheng ZY; Chen YZ
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):328-31. PubMed ID: 16013500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.
    Jiang L
    Int J Biol Macromol; 2013 Jan; 52():218-20. PubMed ID: 23085490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749.
    Xia Z
    Carbohydr Polym; 2013 Oct; 98(1):178-80. PubMed ID: 23987333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Influence of pH control on the production of curdlan by Alcaligenes faecalis strain].
    Wang L; Zhan XB; Zhu YH; Li ZY; Yang Y
    Sheng Wu Gong Cheng Xue Bao; 2002 Sep; 18(5):634-7. PubMed ID: 12561215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources.
    Zhang Q; Sun J; Wang Z; Hang H; Zhao W; Zhuang Y; Chu J
    Bioresour Technol; 2018 Jul; 259():319-324. PubMed ID: 29573611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced curdlan production with nitrogen feeding during polysaccharide synthesis by Rhizobium radiobacter.
    Wang XY; Dong JJ; Xu GC; Han RZ; Ni Y
    Carbohydr Polym; 2016 Oct; 150():385-91. PubMed ID: 27312649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.
    Phillips KR; Pik J; Lawford HG; Lavers B; Kligerman A; Lawford GR
    Can J Microbiol; 1983 Oct; 29(10):1331-8. PubMed ID: 6362809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.
    West TP; Nemmers B
    J Basic Microbiol; 2008 Feb; 48(1):65-8. PubMed ID: 18247398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation.
    Zheng ZY; Jiang Y; Zhan XB; Ma LW; Wu JR; Zhang LM; Lin CC
    Prikl Biokhim Mikrobiol; 2014; 50(1):44-51. PubMed ID: 25272751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative production of curdlan.
    Saudagar PS; Singhal RS
    Appl Biochem Biotechnol; 2004; 118(1-3):21-31. PubMed ID: 15304736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen source concentration on curdlan production by Agrobacterium sp. ATCC 31749 grown on prairie cordgrass hydrolysates.
    West TP
    Prep Biochem Biotechnol; 2016; 46(1):85-90. PubMed ID: 25397813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of extracellular water-insoluble polysaccharide from Pseudomonas sp.
    Cui JD; Qiu JQ
    J Agric Food Chem; 2012 May; 60(19):4865-71. PubMed ID: 22533491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.
    Rafigh SM; Yazdi AV; Vossoughi M; Safekordi AA; Ardjmand M
    Int J Biol Macromol; 2014 Sep; 70():463-73. PubMed ID: 25062991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical maximum and observed product yields associated with curdlan production by Alcaligenes faecalis.
    Phillips KR; Lawford HG
    Can J Microbiol; 1983 Oct; 29(10):1270-6. PubMed ID: 6420029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.
    Liang Y; Zhu L; Ding H; Gao M; Zheng Z; Wu J; Zhan X
    Carbohydr Polym; 2017 Feb; 157():1687-1694. PubMed ID: 27987884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.
    West TP
    J Basic Microbiol; 2009 Dec; 49(6):589-92. PubMed ID: 19810049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749.
    Zhang HT; Zhan XB; Zheng ZY; Wu JR; English N; Yu XB; Lin CC
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):367-79. PubMed ID: 21739265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved curdlan production with discarded bottom parts of Asparagus spear.
    Anane RF; Sun H; Zhao L; Wang L; Lin C; Mao Z
    Microb Cell Fact; 2017 Apr; 16(1):59. PubMed ID: 28388915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant.
    Prakash S; Rajeswari K; Divya P; Ferlin M; Rajeshwari CT; Vanavil B
    Prep Biochem Biotechnol; 2018 May; 48(5):408-418. PubMed ID: 29561223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.