BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18808199)

  • 1. Exploring electron transfer between heme proteins of cytochrome C super family in biosensors: a molecular mechanics study.
    Gursahani S; Schoephoerster RT; Prabhakaran M
    J Biomol Struct Dyn; 2008 Dec; 26(3):329-38. PubMed ID: 18808199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex kinetics of the electron transfer between the photoactive redox label TUPS and the heme of cytochrome c.
    Tenger K; Khoroshyy P; Leitgeb B; Rákhely G; Borovok N; Kotlyar A; Dolgikh DA; Zimányi L
    J Chem Inf Model; 2005; 45(6):1520-6. PubMed ID: 16309248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes.
    Reddi AR; Reedy CJ; Mui S; Gibney BR
    Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intramolecular interactions in the functional control of multiheme cytochromes c.
    Fonseca BM; Paquete CM; Salgueiro CA; Louro RO
    FEBS Lett; 2012 Mar; 586(5):504-9. PubMed ID: 21856299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes.
    Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P
    Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction site for soluble cytochromes on the tetraheme cytochrome subunit bound to the bacterial photosynthetic reaction center mapped by site-directed mutagenesis.
    Osyczka A; Nagashima KV; Sogabe S; Miki K; Yoshida M; Shimada K; Matsuura K
    Biochemistry; 1998 Aug; 37(34):11732-44. PubMed ID: 9718296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function of tyrosine 74 of cytochrome b5.
    Vergères G; Chen DY; Wu FF; Waskell L
    Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri.
    Raffalt AC; Schmidt L; Christensen HE; Chi Q; Ulstrup J
    J Inorg Biochem; 2009 May; 103(5):717-22. PubMed ID: 19217165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway.
    Crnogorac MM; Shen C; Young S; Hansson O; Kostić NM
    Biochemistry; 1996 Dec; 35(51):16465-74. PubMed ID: 8987979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c.
    Lo TP; Murphy ME; Guillemette JG; Smith M; Brayer GD
    Protein Sci; 1995 Feb; 4(2):198-208. PubMed ID: 7757009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of the heme architecture and its environment in tetraheme cytochrome c.
    Akutsu H; Takayama Y
    Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles and patterns in the interaction between mono-heme cytochrome c and its partners in electron transfer processes.
    Bertini I; Cavallaro G; Rosato A
    Metallomics; 2011 Apr; 3(4):354-62. PubMed ID: 21359406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of electronic structure and properties of a Bis(histidine) heme model complex.
    Smith DM; Dupuis M; Vorpagel ER; Straatsma TP
    J Am Chem Soc; 2003 Mar; 125(9):2711-7. PubMed ID: 12603159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome C mutants for superoxide biosensors.
    Wegerich F; Turano P; Allegrozzi M; Möhwald H; Lisdat F
    Anal Chem; 2009 Apr; 81(8):2976-84. PubMed ID: 19296689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of solvent dependent energy transfer pathways in heme proteins.
    Zhang Y; Straub JE
    J Phys Chem B; 2009 Jan; 113(3):825-30. PubMed ID: 19115811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium.
    Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T
    FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.