BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18808216)

  • 1. Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin.
    Warming TP; Mulderij G; Christoffersen KS
    Environ Toxicol Chem; 2009 Feb; 28(2):374-80. PubMed ID: 18808216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early signs of lethal effects in Daphnia magna (Branchiopoda, Cladocera) exposed to the insecticide cypermethrin and the fungicide azoxystrobin.
    Friberg-Jensen U; Nachman G; Christoffersen KS
    Environ Toxicol Chem; 2010 Oct; 29(10):2371-8. PubMed ID: 20872702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic aquatic effect assessment for the fungicide azoxystrobin.
    van Wijngaarden RP; Belgers DJ; Zafar MI; Matser AM; Boerwinkel MC; Arts GH
    Environ Toxicol Chem; 2014 Dec; 33(12):2775-85. PubMed ID: 25196149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of three strobilurins (kresoxim-methyl, pyraclostrobin, and trifloxystrobin) on Daphnia magna.
    Cui F; Chai T; Liu X; Wang C
    Environ Toxicol Chem; 2017 Jan; 36(1):182-189. PubMed ID: 27283376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review.
    Rodrigues ET; Lopes I; Pardal MÂ
    Environ Int; 2013 Mar; 53():18-28. PubMed ID: 23314040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms.
    Gustafsson K; Blidberg E; Elfgren IK; Hellström A; Kylin H; Gorokhova E
    Ecotoxicology; 2010 Feb; 19(2):431-44. PubMed ID: 19830551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of chronic effects of tebuconazole on survival, reproduction and growth of Daphnia magna after different exposure times.
    Sancho E; Villarroel MJ; Ferrando MD
    Ecotoxicol Environ Saf; 2016 Feb; 124():10-17. PubMed ID: 26436476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination and validation of an aquatic Maximum Acceptable Concentration-Environmental Quality Standard (MAC-EQS) value for the agricultural fungicide azoxystrobin.
    Rodrigues ET; Pardal MÂ; Gante C; Loureiro J; Lopes I
    Environ Pollut; 2017 Feb; 221():150-158. PubMed ID: 27913071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative toxicity of rac- and S-tebuconazole to Daphnia magna.
    Qi SZ; Chen XF; Liu Y; Jiang JZ; Wang CJ
    J Environ Sci Health B; 2015; 50(7):456-62. PubMed ID: 25996809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the fungicide azoxystrobin on Atlantic salmon (Salmo salar L.) smolt.
    Olsvik PA; Kroglund F; Finstad B; Kristensen T
    Ecotoxicol Environ Saf; 2010 Nov; 73(8):1852-61. PubMed ID: 20825990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.
    Das P; Xenopoulos MA; Metcalfe CD
    Bull Environ Contam Toxicol; 2013 Jul; 91(1):76-82. PubMed ID: 23708262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is prochloraz a potent synergist across aquatic species? A study on bacteria, daphnia, algae and higher plants.
    Cedergreen N; Kamper A; Streibig JC
    Aquat Toxicol; 2006 Jun; 78(3):243-52. PubMed ID: 16672166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological impacts of time-variable exposure regimes to the fungicide azoxystrobin on freshwater communities in outdoor microcosms.
    Zafar MI; Belgers JD; Van Wijngaarden RP; Matser A; Van den Brink PJ
    Ecotoxicology; 2012 May; 21(4):1024-38. PubMed ID: 22278367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic ecotoxicity of the fungicide pyrimethanil: effect profile under optimal and thermal stress conditions.
    Seeland A; Oehlmann J; Müller R
    Environ Pollut; 2012 Sep; 168():161-9. PubMed ID: 22622013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of agricultural chemicals in Daphnia magna.
    Matsumoto K; Hosokawa M; Kuroda K; Endo G
    Osaka City Med J; 2009 Dec; 55(2):89-97. PubMed ID: 20088408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intra- and interspecific competition on the sensitivity of Daphnia magna populations to the fungicide carbendazim.
    Del Arco AI; Rico A; van den Brink PJ
    Ecotoxicology; 2015 Aug; 24(6):1362-71. PubMed ID: 26119660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense.
    Garanzini DS; Menone ML
    Bull Environ Contam Toxicol; 2015 Feb; 94(2):146-51. PubMed ID: 25416866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and physiological responses of Carcinus maenas to temperature and the fungicide azoxystrobin.
    Rodrigues ET; Moreno A; Mendes T; Palmeira C; Pardal MÂ
    Chemosphere; 2015 Aug; 132():127-34. PubMed ID: 25835271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas.
    Dobbins LL; Usenko S; Brain RA; Brooks BW
    Environ Toxicol Chem; 2009 Dec; 28(12):2744-53. PubMed ID: 19653701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin.
    Rodrigues ET; Pardal MÂ; Laizé V; Cancela ML; Oliveira PJ; Serafim TL
    Environ Pollut; 2015 Nov; 206():619-26. PubMed ID: 26319055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.