These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 18808674)
1. Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Watkins JD; Campbell GR; Halimi H; Loret EP Retrovirology; 2008 Sep; 5():83. PubMed ID: 18808674 [TBL] [Abstract][Full Text] [Related]
2. Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Grégoire C; Péloponèse JM; Esquieu D; Opi S; Campbell G; Solomiac M; Lebrun E; Lebreton J; Loret EP Biopolymers; 2001; 62(6):324-35. PubMed ID: 11857271 [TBL] [Abstract][Full Text] [Related]
3. Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form. Blanco FJ; Hess S; Pannell LK; Rizzo NW; Tycko R J Mol Biol; 2001 Nov; 313(4):845-59. PubMed ID: 11697908 [TBL] [Abstract][Full Text] [Related]
4. Structural and dynamic properties of the HIV-1 tat transduction domain in the free and heparin-bound states. Hakansson S; Caffrey M Biochemistry; 2003 Aug; 42(30):8999-9006. PubMed ID: 12885232 [TBL] [Abstract][Full Text] [Related]
5. UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Foucault M; Mayol K; Receveur-Bréchot V; Bussat MC; Klinguer-Hamour C; Verrier B; Beck A; Haser R; Gouet P; Guillon C Proteins; 2010 May; 78(6):1441-56. PubMed ID: 20034112 [TBL] [Abstract][Full Text] [Related]
6. High yield expression and purification of HIV-1 Tat1-72 for structural studies. Shojania S; Henry GD; Chen VC; Vo TN; Perreault H; O'Neil JD J Virol Methods; 2010 Mar; 164(1-2):35-42. PubMed ID: 19941902 [TBL] [Abstract][Full Text] [Related]
7. Tat peptide-calmodulin binding studies and bioinformatics of HIV-1 protein-calmodulin interactions. McQueen P; Donald LJ; Vo TN; Nguyen DH; Griffiths H; Shojania S; Standing KG; O'Neil JD Proteins; 2011 Jul; 79(7):2233-46. PubMed ID: 21560167 [TBL] [Abstract][Full Text] [Related]
8. Structural characterization of the metal binding site in the cysteine-rich region of HIV-1 Tat protein. Huang HW; Wang KT Biochem Biophys Res Commun; 1996 Oct; 227(2):615-21. PubMed ID: 8878561 [TBL] [Abstract][Full Text] [Related]
9. Conformation of N-terminal HIV-1 Tat (fragment 1-9) peptide by NMR and MD simulations. Kanyalkar M; Srivastava S; Coutinho E J Pept Sci; 2001 Nov; 7(11):579-87. PubMed ID: 11763362 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of HIV-1 Tat variants. Pantano S; Carloni P Proteins; 2005 Feb; 58(3):638-43. PubMed ID: 15609368 [TBL] [Abstract][Full Text] [Related]
11. Orientation and affinity of HIV-1 Tat fragments in Tat-TAR complex determined by fluorescence resonance energy transfer. Cao H; Tamilarasu N; Rana TM Bioconjug Chem; 2006; 17(2):352-8. PubMed ID: 16536465 [TBL] [Abstract][Full Text] [Related]
12. Insights on HIV-1 Tat:P/CAF bromodomain molecular recognition from in vivo experiments and molecular dynamics simulations. Pantano S; Marcello A; Ferrari A; Gaudiosi D; Sabò A; Pellegrini V; Beltram F; Giacca M; Carloni P Proteins; 2006 Mar; 62(4):1062-73. PubMed ID: 16362936 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state. Reingewertz TH; Benyamini H; Lebendiker M; Shalev DE; Friedler A Protein Eng Des Sel; 2009 May; 22(5):281-7. PubMed ID: 19218568 [TBL] [Abstract][Full Text] [Related]
14. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat. Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286 [TBL] [Abstract][Full Text] [Related]
15. 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. Péloponèse JM; Grégoire C; Opi S; Esquieu D; Sturgis J; Lebrun E; Meurs E; Collette Y; Olive D; Aubertin AM; Witvrow M; Pannecouque C; De Clercq E; Bailly C; Lebreton J; Loret EP C R Acad Sci III; 2000 Oct; 323(10):883-94. PubMed ID: 11098404 [TBL] [Abstract][Full Text] [Related]
16. Identification of a highly conserved surface on Tat variants. Mediouni S; Darque A; Ravaux I; Baillat G; Devaux C; Loret EP J Biol Chem; 2013 Jun; 288(26):19072-80. PubMed ID: 23678001 [TBL] [Abstract][Full Text] [Related]
17. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. Fanales-Belasio E; Moretti S; Fiorelli V; Tripiciano A; Pavone Cossut MR; Scoglio A; Collacchi B; Nappi F; Macchia I; Bellino S; Francavilla V; Caputo A; Barillari G; Magnani M; Laguardia ME; Cafaro A; Titti F; Monini P; Ensoli F; Ensoli B J Immunol; 2009 Mar; 182(5):2888-97. PubMed ID: 19234184 [TBL] [Abstract][Full Text] [Related]
18. [Study by NMR and circular dichroism of synthetic "zinc finger" peptide of viral Gag protein from HIV-2]. Laussac JP; Cung MT; Erard M; Mazarguil H C R Acad Sci III; 1991; 313(4):183-6. PubMed ID: 1913257 [TBL] [Abstract][Full Text] [Related]
19. Conformational heterogeneity in two regions of TAT results in structural variations of this protein as a function of HIV-1 isolates. Gregoire CJ; Loret EP J Biol Chem; 1996 Sep; 271(37):22641-6. PubMed ID: 8798435 [TBL] [Abstract][Full Text] [Related]
20. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. Shojania S; O'Neil JD J Biol Chem; 2006 Mar; 281(13):8347-56. PubMed ID: 16423825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]