BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 18809249)

  • 1. On-line monitoring of remediation process of chromium polluted soil using LIBS.
    Gondal MA; Hussain T; Yamani ZH; Baig MA
    J Hazard Mater; 2009 Apr; 163(2-3):1265-71. PubMed ID: 18809249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of toxic metals in waste water from dairy products plant using laser induced breakdown spectroscopy.
    Hussain T; Gondal MA
    Bull Environ Contam Toxicol; 2008 Jun; 80(6):561-5. PubMed ID: 18414762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of chromium in wastewater from refuse incineration power plant near Poyang Lake by laser induced breakdown spectroscopy.
    Yao M; Lin J; Liu M; Xu Y
    Appl Opt; 2012 Apr; 51(10):1552-7. PubMed ID: 22505074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil.
    Zhang P; Jin C; Zhao Z; Tian G
    J Hazard Mater; 2010 May; 177(1-3):1126-33. PubMed ID: 20122801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).
    Kim G; Kwak J; Kim KR; Lee H; Kim KW; Yang H; Park K
    J Hazard Mater; 2013 Dec; 263 Pt 2():754-60. PubMed ID: 24231316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of hazardous pollutants in chrome-tanned leather using locally developed laser-induced breakdown spectrometer.
    Nasr MM; Gondal MA; Seddigi ZS
    Environ Monit Assess; 2011 Apr; 175(1-4):387-95. PubMed ID: 20556649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.
    Singh R; Misra V; Singh RP
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic.
    Buchireddy PR; Bricka RM; Gent DB
    J Hazard Mater; 2009 Feb; 162(1):490-7. PubMed ID: 18599200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation.
    Roach N; Reddy KR; Al-Hamdan AZ
    J Hazard Mater; 2009 Jun; 165(1-3):548-57. PubMed ID: 19013716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy.
    Gondal MA; Hussain T
    Talanta; 2007 Jan; 71(1):73-80. PubMed ID: 19071270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic flow behaviour of metal contaminated expansive soil.
    Sivapullaiah PV; Prakash BS
    J Hazard Mater; 2007 May; 143(3):682-9. PubMed ID: 17276001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa.
    Firdaus-e Bareen ; Tahira SA
    J Hazard Mater; 2011 Feb; 186(1):443-50. PubMed ID: 21129848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters.
    Pironi P; Switzer C; Gerhard JI; Rein G; Torero JL
    Environ Sci Technol; 2011 Apr; 45(7):2980-6. PubMed ID: 21351763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Detection of metal ions in water solution by laser induced breakdown spectroscopy].
    Wu JL; Fu YX; Li Y; Lu Y; Cui ZF; Zheng RE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):1979-82. PubMed ID: 19093543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil.
    Tariq SR; Shah MH; Shaheen N
    J Hazard Mater; 2009 Sep; 169(1-3):285-90. PubMed ID: 19376649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.