BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18809307)

  • 1. Multi-bit biomemory consisting of recombinant protein variants, azurin.
    Yagati AK; Kim SU; Min J; Choi JW
    Biosens Bioelectron; 2009 Jan; 24(5):1503-7. PubMed ID: 18809307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale protein-based memory device composed of recombinant azurin.
    Kim SU; Yagati AK; Min J; Choi JW
    Biomaterials; 2010 Feb; 31(6):1293-8. PubMed ID: 19857891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants.
    Lee T; Min J; Kim SU; Choi JW
    Biomaterials; 2011 May; 32(15):3815-21. PubMed ID: 21354614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers.
    Lee T; El-Said WA; Min J; Choi JW
    Biosens Bioelectron; 2011 Jan; 26(5):2304-10. PubMed ID: 21051218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array.
    Yagati AK; Lee T; Min J; Choi JW
    Biosens Bioelectron; 2013 Feb; 40(1):283-90. PubMed ID: 22884649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application.
    Yagati AK; Kim SU; Min J; Choi JW
    J Nanosci Nanotechnol; 2010 May; 10(5):3220-3. PubMed ID: 20358926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of surfactant CHAPS effect using AFM for making biomemory device consisting of recombinant azurin monolayer.
    Lee T; Ahmed El-Said W; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2010 May; 110(6):712-7. PubMed ID: 20206446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct immobilization of cupredoxin azurin modified by site-directed mutagenesis on gold surface.
    Kim SU; Kim YJ; Choi SG; Yea CH; Singh RP; Min J; Oh BK; Choi JW
    Ultramicroscopy; 2008 Sep; 108(10):1390-5. PubMed ID: 18667275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant protein-based nanoscale biomemory devices.
    Yagati AK; Min J; Choi JW
    J Nanosci Nanotechnol; 2014 Jan; 14(1):433-46. PubMed ID: 24730273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale film formation of ferritin and its application to biomemory device.
    Kim SU; Lee T; Lee JH; Yagati AK; Min J; Choi JW
    Ultramicroscopy; 2009 Jul; 109(8):974-9. PubMed ID: 19345503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano-/microstructured silicon.
    Ressine A; Vaz-Domínguez C; Fernandez VM; De Lacey AL; Laurell T; Ruzgas T; Shleev S
    Biosens Bioelectron; 2010 Jan; 25(5):1001-7. PubMed ID: 19833501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bit storage and bit flip operations in an electromechanical oscillator.
    Mahboob I; Yamaguchi H
    Nat Nanotechnol; 2008 May; 3(5):275-9. PubMed ID: 18654523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale film formation of recombinant azurin variants with various cysteine residues on gold substrate for bioelectronic device.
    Kim SU; Lee JH; Lee T; Min J; Choi JW
    J Nanosci Nanotechnol; 2010 May; 10(5):3241-5. PubMed ID: 20358931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-hemoglobin film based sextet state biomemory device by cross-linked photosensitive hapten monomer.
    Güzel R; Ersöz A; Ziyadanoğulları R; Say R
    Talanta; 2018 Jan; 176():85-91. PubMed ID: 28917810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel HDD-type SNDM ferroelectric data storage system aimed at high-speed data transfer with single probe operation.
    Hiranaga Y; Uda T; Kurihashi Y; Tanaka K; Cho Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2523-8. PubMed ID: 18276549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key integration technologies for nanoscale FRAMs.
    Jung DJ; Kim HH; Kim K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2535-40. PubMed ID: 18276551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles.
    Tseng RJ; Tsai C; Ma L; Ouyang J; Ozkan CS; Yang Y
    Nat Nanotechnol; 2006 Oct; 1(1):72-7. PubMed ID: 18654145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization.
    Song Y; Kim S; Heller MJ; Huang X
    Nat Commun; 2018 Jan; 9(1):281. PubMed ID: 29348493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistate proteinous biomemory device based on redox controllable hapten cross-linker.
    Güzel R; Ersöz A; Dolak İ; Say R
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():336-342. PubMed ID: 28629026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.