BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18809580)

  • 1. Dissection of the molecular defects caused by pathogenic mutations in the DNA repair factor XPC.
    Bernardes de Jesus BM; Bjørås M; Coin F; Egly JM
    Mol Cell Biol; 2008 Dec; 28(23):7225-35. PubMed ID: 18809580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New functions of XPC in the protection of human skin cells from oxidative damage.
    D'Errico M; Parlanti E; Teson M; de Jesus BM; Degan P; Calcagnile A; Jaruga P; Bjørås M; Crescenzi M; Pedrini AM; Egly JM; Zambruno G; Stefanini M; Dizdaroglu M; Dogliotti E
    EMBO J; 2006 Sep; 25(18):4305-15. PubMed ID: 16957781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XPC initiation codon mutation in xeroderma pigmentosum patients with and without neurological symptoms.
    Khan SG; Oh KS; Emmert S; Imoto K; Tamura D; Digiovanna JJ; Shahlavi T; Armstrong N; Baker CC; Neuburg M; Zalewski C; Brewer C; Wiggs E; Schiffmann R; Kraemer KH
    DNA Repair (Amst); 2009 Jan; 8(1):114-25. PubMed ID: 18955168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Transcription Factor IIH complex in nucleotide excision repair.
    Hoag A; Duan M; Mao P
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1(Suppl 1):72-81. PubMed ID: 37545038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel missense variant and multiexon deletion causing a delayed presentation of xeroderma pigmentosum, group C.
    Macke EL; Morales-Rosado JA; Gupta A; Schmitz CT; Kruisselbrink T; Lanpher B; Klee EW
    Cold Spring Harb Mol Case Stud; 2020 Aug; 6(4):. PubMed ID: 32843428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair.
    Kim J; Li CL; Chen X; Cui Y; Golebiowski FM; Wang H; Hanaoka F; Sugasawa K; Yang W
    Nature; 2023 May; 617(7959):170-175. PubMed ID: 37076618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide excision repair in Human cell lines lacking both XPC and CSB proteins.
    Lindsey-Boltz LA; Yang Y; Kose C; Deger N; Eynullazada K; Kawara H; Sancar A
    Nucleic Acids Res; 2023 Jul; 51(12):6238-6245. PubMed ID: 37144462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Founder mutations in xeroderma pigmentosum.
    Tamura D; DiGiovanna JJ; Kraemer KH
    J Invest Dermatol; 2010 Jun; 130(6):1491-3. PubMed ID: 20463673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein.
    Ng JM; Vermeulen W; van der Horst GT; Bergink S; Sugasawa K; Vrieling H; Hoeijmakers JH
    Genes Dev; 2003 Jul; 17(13):1630-45. PubMed ID: 12815074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways.
    Okuda M; Nakazawa Y; Guo C; Ogi T; Nishimura Y
    Nucleic Acids Res; 2017 Dec; 45(22):13043-13055. PubMed ID: 29069470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human XPC protein interactome--a resource.
    Lubin A; Zhang L; Chen H; White VM; Gong F
    Int J Mol Sci; 2013 Dec; 15(1):141-58. PubMed ID: 24366067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Xpc gene markedly affects cell survival in mouse bone marrow.
    Fischer JL; Kumar MA; Day TW; Hardy TM; Hamilton S; Besch-Williford C; Safa AR; Pollok KE; Smith ML
    Mutagenesis; 2009 Jul; 24(4):309-16. PubMed ID: 19372135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex.
    Paul D; Mu H; Tavakoli A; Dai Q; Chakraborty S; He C; Ansari A; Broyde S; Min JH
    DNA Repair (Amst); 2021 Nov; 107():103194. PubMed ID: 34428697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome characterization of XPC-deficient melanocytes generated by CRISPR-Cas9 technology reveals alteration in the expression of several hundred proteins.
    Cario M; Scalia J; Mahfouf W; Muzotte E; Michaud V; Plaisant C; Dupuy JW; Douki T; Morice-Picard F; Rambert J; Perrier E; Trompezinski S; Rezvani HR
    J Dermatol Sci; 2024 May; 114(2):79-82. PubMed ID: 38556435
    [No Abstract]   [Full Text] [Related]  

  • 15. Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure.
    Muniesa-Vargas A; Davó-Martínez C; Ribeiro-Silva C; van der Woude M; Thijssen KL; Haspels B; Häckes D; Kaynak ÜU; Kanaar R; Marteijn JA; Theil AF; Kuijten MMP; Vermeulen W; Lans H
    Nat Commun; 2024 Apr; 15(1):3490. PubMed ID: 38664429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair.
    Maritz C; Khaleghi R; Yancoskie MN; Diethelm S; Brülisauer S; Ferreira NS; Jiang Y; Sturla SJ; Naegeli H
    Nat Commun; 2023 Jul; 14(1):3892. PubMed ID: 37393406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein.
    Le J; Min JH
    J Biomol Struct Dyn; 2023; 41(23):13535-13562. PubMed ID: 36890638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide excision repair: a versatile and smart toolkit.
    Zhang X; Yin M; Hu J
    Acta Biochim Biophys Sin (Shanghai); 2022 May; 54(6):807-819. PubMed ID: 35975604
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.