These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18809677)

  • 1. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.
    Wohlgemuth I; Brenner S; Beringer M; Rodnina MV
    J Biol Chem; 2008 Nov; 283(47):32229-35. PubMed ID: 18809677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential mechanisms in the catalysis of peptide bond formation on the ribosome.
    Beringer M; Bruell C; Xiong L; Pfister P; Bieling P; Katunin VI; Mankin AS; Böttger EC; Rodnina MV
    J Biol Chem; 2005 Oct; 280(43):36065-72. PubMed ID: 16129670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-assisted catalysis of peptide bond formation by the ribosome.
    Weinger JS; Parnell KM; Dorner S; Green R; Strobel SA
    Nat Struct Mol Biol; 2004 Nov; 11(11):1101-6. PubMed ID: 15475967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal Peptide Syntheses from Activated Substrates Reveal Rate Limitation by an Unexpected Step at the Peptidyl Site.
    Wang J; Kwiatkowski M; Forster AC
    J Am Chem Soc; 2016 Dec; 138(48):15587-15595. PubMed ID: 27934010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA.
    Johansson M; Ieong KW; Trobro S; Strazewski P; Åqvist J; Pavlov MY; Ehrenberg M
    Proc Natl Acad Sci U S A; 2011 Jan; 108(1):79-84. PubMed ID: 21169502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
    Beringer M; Rodnina MV
    Biol Chem; 2007 Jul; 388(7):687-91. PubMed ID: 17570820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA.
    Green R; Switzer C; Noller HF
    Science; 1998 Apr; 280(5361):286-9. PubMed ID: 9535658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin.
    Muto H; Ito K
    Biochem Biophys Res Commun; 2008 Feb; 366(4):1043-7. PubMed ID: 18155161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle.
    Pan D; Zhang CM; Kirillov S; Hou YM; Cooperman BS
    J Biol Chem; 2008 Jun; 283(26):18431-40. PubMed ID: 18448426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome protection by tRNA derivatives against inactivation by virginiamycin M: evidence for two types of interaction of tRNA with the donor site of peptidyl transferase.
    Chinali G; Di Giambattista M; Cocito C
    Biochemistry; 1987 Mar; 26(6):1592-7. PubMed ID: 3109469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different substrate-dependent transition states in the active site of the ribosome.
    Kuhlenkoetter S; Wintermeyer W; Rodnina MV
    Nature; 2011 Jul; 476(7360):351-4. PubMed ID: 21804565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced fit of the peptidyl-transferase center of the ribosome and conformational freedom of the esterified amino acids.
    Lehmann J
    RNA; 2017 Feb; 23(2):229-239. PubMed ID: 27879432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
    Watanabe K; Toh Y; Suto K; Shimizu Y; Oka N; Wada T; Tomita K
    Nature; 2007 Oct; 449(7164):867-71. PubMed ID: 17891155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 2'-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC.
    Zaher HS; Shaw JJ; Strobel SA; Green R
    EMBO J; 2011 May; 30(12):2445-53. PubMed ID: 21552203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
    Wurmbach P; Nierhaus KH
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An apparent conformational change in tRNA(Phe) that is associated with the peptidyl transferase reaction.
    Odom OW; Hardesty B
    Biochimie; 1987 Sep; 69(9):925-38. PubMed ID: 3126830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide bond formation on the ribosome: structure and mechanism.
    Rodnina MV; Wintermeyer W
    Curr Opin Struct Biol; 2003 Jun; 13(3):334-40. PubMed ID: 12831884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity.
    Brunelle JL; Youngman EM; Sharma D; Green R
    RNA; 2006 Jan; 12(1):33-9. PubMed ID: 16373492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.