These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. Wong KY; Tan CH; Tan KY; Quraishi NH; Tan NH J Proteomics; 2018 Mar; 175():156-173. PubMed ID: 29278784 [TBL] [Abstract][Full Text] [Related]
63. Putative roles of Ca(2+) -independent phospholipase A2 in respiratory chain-associated ROS production in brain mitochondria: influence of docosahexaenoic acid and bromoenol lactone. Nordmann C; Strokin M; Schönfeld P; Reiser G J Neurochem; 2014 Oct; 131(2):163-76. PubMed ID: 24923354 [TBL] [Abstract][Full Text] [Related]
64. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. Lauridsen LP; Laustsen AH; Lomonte B; Gutiérrez JM J Proteomics; 2017 Jan; 150():98-108. PubMed ID: 27593527 [TBL] [Abstract][Full Text] [Related]
65. Phospholipid hydrolysis in serum lipoproteins by a basic phospholipase A2 from Naja nigricollis snake venom and an acidic phospholipase A2 from Naja naja atra snake venom. Zan YP; Condrea E; Yang CC; Rosenberg P Toxicon; 1983; 21(4):481-90. PubMed ID: 6623492 [TBL] [Abstract][Full Text] [Related]
66. Effects of beta-bungarotoxin and phospholipase A2 from Naja naja atra snake venom on ATPase activities of synaptic membranes from rat cerebral cortex. Lin-Shiau SY; Chen CC Toxicon; 1982; 20(2):409-17. PubMed ID: 6123164 [TBL] [Abstract][Full Text] [Related]
67. Potassium channel blocking actions of beta-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Rowan EG; Harvey AL Br J Pharmacol; 1988 Jul; 94(3):839-47. PubMed ID: 3263160 [TBL] [Abstract][Full Text] [Related]
68. Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Terra AL; Moreira-Dill LS; Simões-Silva R; Monteiro JR; Cavalcante WL; Gallacci M; Barros NB; Nicolete R; Teles CB; Medeiros PS; Zanchi FB; Zuliani JP; Calderon LA; Stábeli RG; Soares AM Toxicon; 2015 Sep; 103():1-11. PubMed ID: 26095535 [TBL] [Abstract][Full Text] [Related]
69. Structural analysis of trimeric phospholipase A2 neurotoxin from the Australian taipan snake venom. Cendron L; Mičetić I; Polverino de Laureto P; Paoli M FEBS J; 2012 Sep; 279(17):3121-35. PubMed ID: 22776098 [TBL] [Abstract][Full Text] [Related]
71. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction. Duregotti E; Zanetti G; Scorzeto M; Megighian A; Montecucco C; Pirazzini M; Rigoni M Toxins (Basel); 2015 Dec; 7(12):5322-36. PubMed ID: 26670253 [TBL] [Abstract][Full Text] [Related]
72. The relationship between high-affinity noncatalytic binding of snake venom phospholipases A2 to brain synaptic plasma membranes and their central lethal potencies. Rapuano BE; Yang CC; Rosenberg P Biochim Biophys Acta; 1986 Apr; 856(3):457-70. PubMed ID: 3964691 [TBL] [Abstract][Full Text] [Related]
73. Inhibition of presynaptic neurotoxins in taipan venom by suramin. Kuruppu S; Chaisakul J; Smith AI; Hodgson WC Neurotox Res; 2014 Apr; 25(3):305-10. PubMed ID: 24129771 [TBL] [Abstract][Full Text] [Related]
74. Amino-acid sequence of the alpha-subunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus). Lind P; Eaker D Eur J Biochem; 1982 Jun; 124(3):441-7. PubMed ID: 7049694 [TBL] [Abstract][Full Text] [Related]
75. [1-14C]oleate-labeled autoclaved yeast: a membranous substrate for measuring phospholipase A2 activity in vitro. Harris LK; Franson RC Anal Biochem; 1991 Mar; 193(2):191-6. PubMed ID: 1872466 [TBL] [Abstract][Full Text] [Related]
77. The three-dimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Carredano E; Westerlund B; Persson B; Saarinen M; Ramaswamy S; Eaker D; Eklund H Toxicon; 1998 Jan; 36(1):75-92. PubMed ID: 9604284 [TBL] [Abstract][Full Text] [Related]
78. A pan-specific antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms. Ratanabanangkoon K; Tan KY; Pruksaphon K; Klinpayom C; Gutiérrez JM; Quraishi NH; Tan CH Sci Rep; 2020 Jul; 10(1):11261. PubMed ID: 32647261 [TBL] [Abstract][Full Text] [Related]
79. Neurotoxins from Australo-Papuan elapids: a biochemical and pharmacological perspective. Kuruppu S; Smith AI; Isbister GK; Hodgson WC Crit Rev Toxicol; 2008; 38(1):73-86. PubMed ID: 18161503 [TBL] [Abstract][Full Text] [Related]
80. Isolation and characterization of a presynaptic neurotoxin, P-elapitoxin-Bf1a from Malaysian Bungarus fasciatus venom. Rusmili MR; Yee TT; Mustafa MR; Hodgson WC; Othman I Biochem Pharmacol; 2014 Oct; 91(3):409-16. PubMed ID: 25064255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]