These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
655 related articles for article (PubMed ID: 18810291)
1. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. Nicolaou N; Goodacre R Analyst; 2008 Oct; 133(10):1424-31. PubMed ID: 18810291 [TBL] [Abstract][Full Text] [Related]
2. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Nicolaou N; Xu Y; Goodacre R Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. Nicolaou N; Xu Y; Goodacre R J Dairy Sci; 2010 Dec; 93(12):5651-60. PubMed ID: 21094736 [TBL] [Abstract][Full Text] [Related]
4. Detection and quantification of bacterial spoilage in milk and pork meat using MALDI-TOF-MS and multivariate analysis. Nicolaou N; Xu Y; Goodacre R Anal Chem; 2012 Jul; 84(14):5951-8. PubMed ID: 22698768 [TBL] [Abstract][Full Text] [Related]
5. Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. Ojeda JJ; Romero-González ME; Banwart SA Anal Chem; 2009 Aug; 81(15):6467-73. PubMed ID: 19580254 [TBL] [Abstract][Full Text] [Related]
6. Comparison of diffuse-reflectance absorbance and attenuated total reflectance FT-IR for the discrimination of bacteria. Winder CL; Goodacre R Analyst; 2004 Nov; 129(11):1118-22. PubMed ID: 15508042 [TBL] [Abstract][Full Text] [Related]
7. Monitoring quality loss of pasteurized skim milk using visible and short wavelength near-infrared spectroscopy and multivariate analysis. Al-Qadiri HM; Lin M; Al-Holy MA; Cavinato AG; Rasco BA J Dairy Sci; 2008 Mar; 91(3):950-8. PubMed ID: 18292250 [TBL] [Abstract][Full Text] [Related]
8. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. Subramanian A; Ahn J; Balasubramaniam VM; Rodriguez-Saona L J Agric Food Chem; 2006 Dec; 54(26):10300-6. PubMed ID: 17177574 [TBL] [Abstract][Full Text] [Related]
9. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy. Samuels AC; Snyder AP; Emge DK; Amant D; Minter J; Campbell M; Tripathi A Appl Spectrosc; 2009 Jan; 63(1):14-24. PubMed ID: 19146715 [TBL] [Abstract][Full Text] [Related]
10. Determining the Age of Spoiled Milk from Dried Films Using Attenuated Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy. Richardson Z; Perez-Guaita D; Kochan K; Wood BR Appl Spectrosc; 2019 Sep; 73(9):1041-1050. PubMed ID: 30990066 [TBL] [Abstract][Full Text] [Related]
11. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. Yang H; Irudayaraj J J Pharm Pharmacol; 2002 Sep; 54(9):1247-55. PubMed ID: 12356279 [TBL] [Abstract][Full Text] [Related]
12. Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. Al-Qadiri HM; Al-Alami NI; Al-Holy MA; Rasco BA J Agric Food Chem; 2008 Oct; 56(19):8992-7. PubMed ID: 18778073 [TBL] [Abstract][Full Text] [Related]
13. Multivariate analysis of attenuated total reflection-Fourier transform infrared spectroscopic data to confirm the origin of honeys. Hennessy S; Downey G; O'Donnell C Appl Spectrosc; 2008 Oct; 62(10):1115-23. PubMed ID: 18926021 [TBL] [Abstract][Full Text] [Related]
14. FT-IR microspectroscopy: a promising method for the rapid identification of Listeria species. Janbu AO; Møretrø T; Bertrand D; Kohler A FEMS Microbiol Lett; 2008 Jan; 278(2):164-70. PubMed ID: 18053065 [TBL] [Abstract][Full Text] [Related]
15. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy. Schulz H; Baranska M; Quilitzsch R; Schütze W Analyst; 2004 Oct; 129(10):917-20. PubMed ID: 15457323 [TBL] [Abstract][Full Text] [Related]
16. FT-IR spectroscopy for identification of closely related lactobacilli. Oust A; Møretrø T; Kirschner C; Narvhus JA; Kohler A J Microbiol Methods; 2004 Nov; 59(2):149-62. PubMed ID: 15369851 [TBL] [Abstract][Full Text] [Related]
17. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints. Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139 [TBL] [Abstract][Full Text] [Related]
19. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning. Ellis DI; Broadhurst D; Kell DB; Rowland JJ; Goodacre R Appl Environ Microbiol; 2002 Jun; 68(6):2822-8. PubMed ID: 12039738 [TBL] [Abstract][Full Text] [Related]
20. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke. Thompson BT; Mizaikoff B Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]