BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18810878)

  • 1. Modeling the physiological state of the inoculum and CO2 atmosphere on the lag phase and growth rate of Listeria monocytogenes.
    De Jesús AJ; Whiting RC
    J Food Prot; 2008 Sep; 71(9):1915-8. PubMed ID: 18810878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The combined affects of modified atmosphere, temperature, nisin and ALTA 2341 on the growth of Listeria monocytogenes.
    Szabo EA; Cahill ME
    Int J Food Microbiol; 1998 Aug; 43(1-2):21-31. PubMed ID: 9761335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the lag phase of Listeria monocytogenes.
    Whiting RC; Bagi LK
    Int J Food Microbiol; 2002 Mar; 73(2-3):291-5. PubMed ID: 11934036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of growth atmosphere on the ability of Listeria monocytogenes to survive exposure to acid, proteolytic enzymes and bile salts.
    King T; Ferenci T; Szabo EA
    Int J Food Microbiol; 2003 Jul; 84(2):133-43. PubMed ID: 12781937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing.
    Hayman MM; Anantheswaran RC; Knabel SJ
    Int J Food Microbiol; 2007 Apr; 115(2):220-6. PubMed ID: 17173999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of CO2 on the resuscitation of Listeria monocytogenes injured by various bactericidal treatments.
    Van Houteghem N; Devlieghere F; Rajkovic A; Gómez SM; Uyttendaele M; Debevere J
    Int J Food Microbiol; 2008 Mar; 123(1-2):67-73. PubMed ID: 18230409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of modified atmosphere packaging on the growth of spoilage microorganisms and Listeria monocytogenes on fresh cheese.
    Brown SRB; Forauer EC; D'Amico DJ
    J Dairy Sci; 2018 Sep; 101(9):7768-7779. PubMed ID: 29960774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a challenge testing protocol to assess the stability of ready-to-eat cooked meat products against growth of Listeria monocytogenes.
    Uyttendaele M; Rajkovic A; Benos G; François K; Devlieghere F; Debevere J
    Int J Food Microbiol; 2004 Jan; 90(2):219-36. PubMed ID: 14698103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the growth of Listeria monocytogenes based on a time to detect model in culture media and frankfurters.
    Diez-Gonzalez F; Belina D; Labuza TP; Pal A
    Int J Food Microbiol; 2007 Feb; 113(3):277-83. PubMed ID: 17140686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive modeling of the growth of Listeria monocytogenes in CO2 environments.
    Farber JM; Cai Y; Ross WH
    Int J Food Microbiol; 1996 Sep; 32(1-2):133-44. PubMed ID: 8880334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different histories of the inoculum on lag phase and growth of Listeria monocytogenes in meat models.
    Jacobsen T; Koch AG
    J Food Prot; 2006 Mar; 69(3):532-41. PubMed ID: 16541682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere.
    Nilsson L; Huss HH; Gram L
    Int J Food Microbiol; 1997 Sep; 38(2-3):217-27. PubMed ID: 9506287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the growth of Listeria monocytogenes in refrigerated ready-to-eat frankfurters: influence of strain, temperature, packaging, lactate and diacetate, and background microflora.
    Pal A; Labuza TP; Diez-Gonzalez F
    J Food Prot; 2008 Sep; 71(9):1806-16. PubMed ID: 18810864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Effects of the Preculture Temperature on the Lag Phase of
    Yue S; Liu Y; Wang X; Xu D; Qiu J; Liu Q; Dong Q
    J Food Prot; 2019 Dec; 82(12):2100-2107. PubMed ID: 31729920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Listeria monocytogenes in fresh-cut coconut as affected by storage conditions and inoculum size.
    Sinigaglia M; Bevilacqua A; Campaniello D; D'Amato D; Corbo MR
    J Food Prot; 2006 Apr; 69(4):820-5. PubMed ID: 16629024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Hwang CA; Tamplin ML
    J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens.
    Couvert O; Guégan S; Hézard B; Huchet V; Lintz A; Thuault D; Stahl V
    Food Microbiol; 2017 Dec; 68():89-96. PubMed ID: 28800830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of packaging atmosphere and lactic acid on growth and survival of Listeria monocytogenes in crayfish tail meat 4 degrees C.
    Pothuri P; Marshall DL; McMillin KW
    J Food Prot; 1996 Mar; 59(3):253-6. PubMed ID: 10463442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.