These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18811152)

  • 1. Modeling of the various minima on the potential energy surface of bispidine copper(II) complexes: a further test for ligand field molecular mechanics.
    Bentz A; Comba P; Deeth RJ; Kerscher M; Seibold B; Wadepohl H
    Inorg Chem; 2008 Oct; 47(20):9518-27. PubMed ID: 18811152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modelling of Jahn-Teller distortions in Cu(II)N6 complexes: elongations, compressions and the pathways in between.
    Deeth RJ; Hearnshaw LJ
    Dalton Trans; 2006 Feb; (8):1092-100. PubMed ID: 16474895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability constants: a new twist in transition metal bispidine chemistry.
    Born K; Comba P; Ferrari R; Lawrance GA; Wadepohl H
    Inorg Chem; 2007 Jan; 46(2):458-64. PubMed ID: 17279825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel bispidine ligands and their first-row transition metal complexes: trigonal bipyramidal and trigonal prismatic geometries.
    Comba P; Haaf C; Wadepohl H
    Inorg Chem; 2009 Jul; 48(14):6604-14. PubMed ID: 19456149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular modelling for coordination compounds: Cu(II)-amine complexes.
    Deeth RJ; Hearnshaw LJ
    Dalton Trans; 2005 Nov; (22):3638-45. PubMed ID: 16258614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distortional isomerism with copper(I) complexes of 3,7-diazabicyclo[3.3.1]nonane derivatives.
    Born K; Comba P; Kerscher M; Linti G; Pritzkow H; Rohwer H
    Dalton Trans; 2009 Jan; (2):362-7. PubMed ID: 19089018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling anhydrous and aqua copper(II) amino acid complexes: a new molecular mechanics force field parametrization based on quantum chemical studies and experimental crystal data.
    Sabolović J; Tautermann CS; Loerting T; Liedl KR
    Inorg Chem; 2003 Apr; 42(7):2268-79. PubMed ID: 12665360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of the (bispidine)copper(II)-catalyzed aziridination of styrene: a combined experimental and theoretical study.
    Comba P; Lang C; Lopez de Laorden C; Muruganantham A; Rajaraman G; Wadepohl H; Zajaczkowski M
    Chemistry; 2008; 14(17):5313-28. PubMed ID: 18431732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand field stabilization and activation energies revisited: molecular modeling of the thermodynamic and kinetic properties of divalent, first-row aqua complexes.
    Deeth RJ; Randell K
    Inorg Chem; 2008 Aug; 47(16):7377-88. PubMed ID: 18652450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, structure, and highly efficient copper-catalyzed aziridination with a tetraaza-bispidine ligand.
    Comba P; Haaf C; Lienke A; Muruganantham A; Wadepohl H
    Chemistry; 2009 Oct; 15(41):10880-7. PubMed ID: 19746459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand.
    Bleiholder C; Börzel H; Comba P; Ferrari R; Heydt M; Kerscher M; Kuwata S; Laurenczy G; Lawrance GA; Lienke A; Martin B; Merz M; Nuber B; Pritzkow H
    Inorg Chem; 2005 Oct; 44(22):8145-55. PubMed ID: 16241165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive molecular mechanics model for oxidized type I copper proteins: active site structures, strain energies, and entatic bulging.
    Deeth RJ
    Inorg Chem; 2007 May; 46(11):4492-503. PubMed ID: 17461575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural variation in transition-metal bispidine compounds.
    Comba P; Kerscher M; Merz M; Müller V; Pritzkow H; Remenyi R; Schiek W; Xiong Y
    Chemistry; 2002 Dec; 8(24):5750-60. PubMed ID: 12693057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic structure of bispidine iron(IV) oxo complexes.
    Anastasi AE; Comba P; McGrady J; Lienke A; Rohwer H
    Inorg Chem; 2007 Aug; 46(16):6420-6. PubMed ID: 17608472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonds as structural directive towards unusual polynuclear complexes: synthesis, structure, and magnetic properties of copper(II) and nickel(II) complexes with a 2-aminoglucose ligand.
    Burkhardt A; Spielberg ET; Simon S; Görls H; Buchholz A; Plass W
    Chemistry; 2009; 15(5):1261-71. PubMed ID: 19101969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Ligand Field Molecular Mechanics in Tinker.
    Foscato M; Deeth RJ; Jensen VR
    J Chem Inf Model; 2015 Jun; 55(6):1282-90. PubMed ID: 25970002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DommiMOE: an implementation of ligand field molecular mechanics in the molecular operating environment.
    Deeth RJ; Fey N; Williams-Hubbard B
    J Comput Chem; 2005 Jan; 26(2):123-30. PubMed ID: 15584081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic Jahn-Teller effect in Cu(II) doped MgO.
    Riley MJ; Noble CJ; Tregenna-Piggott PL
    J Chem Phys; 2009 Mar; 130(10):104708. PubMed ID: 19292550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand field torque: a pi-type electronic driving force for determining ligand rotational preferences.
    Deeth RJ; Anastasi AE; Randell K
    Dalton Trans; 2009 Aug; (30):6007-12. PubMed ID: 19623401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling for Cu(II)-aminopolycarboxylate complexes: structures, conformational energies, and ligand binding affinities.
    Ćendić M; Matović ZD; Deeth RJ
    J Comput Chem; 2013 Dec; 34(31):2687-96. PubMed ID: 24105618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.