BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18811188)

  • 1. Solvation of phenylglycine- and leucine-derived chiral stationary phases: molecular dynamics simulation study.
    Nita S; Cann NM
    J Phys Chem B; 2008 Oct; 112(41):13022-37. PubMed ID: 18811188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation of the Whelk-O1 chiral stationary phase: a molecular dynamics study.
    Zhao C; Cann NM
    J Chromatogr A; 2006 Oct; 1131(1-2):110-29. PubMed ID: 16950326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline-based chiral stationary phases: a molecular dynamics study of the interfacial structure.
    Ashtari M; Cann NM
    J Chromatogr A; 2011 Sep; 1218(37):6331-47. PubMed ID: 21798547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elution order-absolute configuration relationship of K-region dihydrodiol enantiomers of benz[a]anthracene derivatives in chiral stationary phase high-performance liquid chromatography.
    Yang SK; Mushtaq M; Fu PP
    J Chromatogr; 1986 Dec; 371():195-209. PubMed ID: 3558546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A screening method for chiral selectors that does not require covalent attachment.
    Chen Z; Yang Y; Werner S; Wipf P; Weber SG
    J Am Chem Soc; 2006 Feb; 128(7):2208-9. PubMed ID: 16478163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct separation of non-K-region mono-ol and diol enantiomers of phenanthrene, benz[a]anthracene, and chrysene by high-performance liquid chromatography with chiral stationary phases.
    Weems HB; Mushtaq M; Fu PP; Yang SK
    J Chromatogr; 1986 Dec; 371():211-25. PubMed ID: 3558547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The docking of chiral analytes on proline-based chiral stationary phases: A molecular dynamics study of selectivity.
    Ashtari M; Cann NM
    J Chromatogr A; 2015 Aug; 1409():89-107. PubMed ID: 26220608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioseparation of four organophosphonate derivatives on N-(3,5-dinitrobenzoyl)-L-leucine-n-propylamide stationary phase by molecular modeling.
    Liu B; Zhou Y; Yang GS; Aboul-Enein HY
    Chirality; 2013 Feb; 25(2):101-6. PubMed ID: 23180664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of stereoselective nonaqueous capillary electrophoresis system for the resolution of cationic and amphoteric analytes.
    Zarbl E; Lämmerhofer M; Franco P; Petracs M; Lindner W
    Electrophoresis; 2001 Sep; 22(15):3297-307. PubMed ID: 11589294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations and density functional theory studies of NALMA and NAGMA dipeptides.
    Boopathi S; Kolandaivel P
    J Biomol Struct Dyn; 2013; 31(2):158-73. PubMed ID: 22845754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrophoresis with (R)-(--)-N-(3,5-dinitrobenzoyl)-alpha-phenylglycine as chiral selector for separation of albendazole sulfoxide enantiomers and their analysis in human plasma.
    Thormann W; Prost F; Procházková A
    J Pharm Biomed Anal; 2002 Jan; 27(3-4):555-67. PubMed ID: 11755756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly-proline-based chiral stationary phases: a molecular dynamics study of triproline, tetraproline, pentaproline and hexaproline interfaces.
    Ashtari M; Cann NM
    J Chromatogr A; 2012 Nov; 1265():70-87. PubMed ID: 23068764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convenient synthesis of pi-acceptor chiral stationary phases for high-performance liquid chromatography from halogen-substituted 3,5-dinitrobenzoylamides.
    Malyshev OR; Vinogradov MG
    J Chromatogr A; 1999 Oct; 859(2):143-51. PubMed ID: 10574207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational optimization of the Whelk-O1 chiral stationary phase using molecular dynamics simulations.
    Zhao CF; Diemert S; Cann NM
    J Chromatogr A; 2009 Aug; 1216(32):5968-78. PubMed ID: 19586635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral bis(amino alcohol)oxalamide gelators-gelation properties and supramolecular organization: racemate versus pure enantiomer gelation.
    Makarević J; Jokić M; Raza Z; Stefanić Z; Kojić-Prodić B; Zinić M
    Chemistry; 2003 Nov; 9(22):5567-80. PubMed ID: 14639640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of optical purity of 3,5-dimethoxybenzoyl-leucine diethylamide by chiral chromatography and 1H and 13C NMR spectroscopy.
    Heo KS; Hyun MH; Cho YJ; Ryoo JJ
    Chirality; 2011 Apr; 23(4):281-6. PubMed ID: 20928896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of triproline and tri-alpha-methylproline chiral stationary phases: retention and enantioseparation associated with hydrogen bonding.
    Lao W; Gan J
    J Chromatogr A; 2009 Jun; 1216(25):5020-9. PubMed ID: 19446822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the chiral recognition mechanism of cinchona alkaloid carbamate-type receptors for 3,5-dinitrobenzoyl amino acids.
    Maier NM; Schefzick S; Lombardo GM; Feliz M; Rissanen K; Lindner W; Lipkowitz KB
    J Am Chem Soc; 2002 Jul; 124(29):8611-29. PubMed ID: 12121103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular dynamics study of chirality transfer from chiral surfaces to nearby solvent.
    Wang S; Cann NM
    J Chem Phys; 2009 Jun; 130(24):244701. PubMed ID: 19566168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral recognition: design and preparation of chiral stationary phases using selectors derived from ugi multicomponent condensation reactions and a combinatorial approach.
    Brahmachary E; Ling FH; Svec F; Fréchet JM
    J Comb Chem; 2003; 5(4):441-50. PubMed ID: 12857112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.