These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18811212)

  • 21. Ab initio thermal transport properties of nanostructures from density functional perturbation theory.
    Calzolari A; Jayasekera T; Kim KW; Nardelli MB
    J Phys Condens Matter; 2012 Dec; 24(49):492204. PubMed ID: 23164749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport.
    Li M; Kang JS; Nguyen HD; Wu H; Aoki T; Hu Y
    Adv Mater; 2019 Aug; 31(33):e1901021. PubMed ID: 31231881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device.
    Weathers A; Bi K; Pettes MT; Shi L
    Rev Sci Instrum; 2013 Aug; 84(8):084903. PubMed ID: 24007092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport.
    Hippalgaonkar K; Huang B; Chen R; Sawyer K; Ercius P; Majumdar A
    Nano Lett; 2010 Nov; 10(11):4341-8. PubMed ID: 20939585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon and thermal expansion properties in Weyl semimetals MX (M = Nb, Ta; X = P, As): ab initio studies.
    Chang D; Liu Y; Rao F; Wang F; Sun Q; Jia Y
    Phys Chem Chem Phys; 2016 Jun; 18(21):14503-8. PubMed ID: 27174542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon nanowire band gap modification.
    Nolan M; O'Callaghan S; Fagas G; Greer JC; Frauenheim T
    Nano Lett; 2007 Jan; 7(1):34-8. PubMed ID: 17212436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry dependent I-V characteristics of silicon nanowires.
    Ng MF; Shen L; Zhou L; Yang SW; Tan VB
    Nano Lett; 2008 Nov; 8(11):3662-7. PubMed ID: 18850756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-principles study of silicon nanowire approaching the bulk limit.
    Ng MF; Sullivan MB; Tong SW; Wu P
    Nano Lett; 2011 Nov; 11(11):4794-9. PubMed ID: 21942398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio study of the mechanical and transport properties of pure and contaminated silver nanowires.
    Barzilai S; Tavazza F; Levine LE
    J Phys Condens Matter; 2013 Aug; 25(32):325303. PubMed ID: 23846722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties.
    Zhu G; Zhang S; Xu Z; Ma J; Shen X
    J Am Chem Soc; 2011 Oct; 133(39):15605-12. PubMed ID: 21870837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties.
    Fan Z; Wang Y; Gu X; Qian P; Su Y; Ala-Nissila T
    J Phys Condens Matter; 2020 Mar; 32(13):135901. PubMed ID: 31775129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductance of thin silicon nanowires.
    Chen R; Hochbaum AI; Murphy P; Moore J; Yang P; Majumdar A
    Phys Rev Lett; 2008 Sep; 101(10):105501. PubMed ID: 18851223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ballistic conductance in oxidized Si nanowires.
    Fagas G; Greer JC
    Nano Lett; 2009 May; 9(5):1856-60. PubMed ID: 19344112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlating electronic transport to atomic structures in self-assembled quantum wires.
    Qin S; Kim TH; Zhang Y; Ouyang W; Weitering HH; Shih CK; Baddorf AP; Wu R; Li AP
    Nano Lett; 2012 Feb; 12(2):938-42. PubMed ID: 22268695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.