These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18811212)

  • 41. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires.
    Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L
    J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gate-controlled donor activation in silicon nanowires.
    Yan B; Frauenheim T; Gali A
    Nano Lett; 2010 Sep; 10(9):3791-5. PubMed ID: 20718483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal conductivity reduction in silicon fishbone nanowires.
    Maire J; Anufriev R; Hori T; Shiomi J; Volz S; Nomura M
    Sci Rep; 2018 Mar; 8(1):4452. PubMed ID: 29535335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced first-order Raman scattering from arrays of vertical silicon nanowires.
    Khorasaninejad M; Walia J; Saini SS
    Nanotechnology; 2012 Jul; 23(27):275706. PubMed ID: 22710724
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structures and energetics of hydrogen-terminated silicon nanowire surfaces.
    Zhang RQ; Lifshitz Y; Ma DD; Zhao YL; Frauenheim T; Lee ST; Tong SY
    J Chem Phys; 2005 Oct; 123(14):144703. PubMed ID: 16238412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Significant reduction of thermal conductivity in silicon nanowire arrays.
    Zhang T; Wu SL; Zheng RT; Cheng GA
    Nanotechnology; 2013 Dec; 24(50):505718. PubMed ID: 24285219
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling transport in ultrathin Si nanowires: charged versus neutral impurities.
    Rurali R; Markussen T; Suñé J; Brandbyge M; Jauho AP
    Nano Lett; 2008 Sep; 8(9):2825-8. PubMed ID: 18672945
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ballistic Phonons in Ultrathin Nanowires.
    Vakulov D; Gireesan S; Swinkels MY; Chavez R; Vogelaar T; Torres P; Campo A; De Luca M; Verheijen MA; Koelling S; Gagliano L; Haverkort JEM; Alvarez FX; Bobbert PA; Zardo I; Bakkers EPAM
    Nano Lett; 2020 Apr; 20(4):2703-2709. PubMed ID: 32091910
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomistic design of thermoelectric properties of silicon nanowires.
    Vo TT; Williamson AJ; Lordi V; Galli G
    Nano Lett; 2008 Apr; 8(4):1111-4. PubMed ID: 18302325
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation and segregation energies of B and P doped and BP codoped silicon nanowires.
    Peelaers H; Partoens B; Peeters FM
    Nano Lett; 2006 Dec; 6(12):2781-4. PubMed ID: 17163705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene.
    Fei R; Faghaninia A; Soklaski R; Yan JA; Lo C; Yang L
    Nano Lett; 2014 Nov; 14(11):6393-9. PubMed ID: 25254626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetic properties of 2D nickel nanostrips: structure dependent magnetism and Stoner criterion.
    Kashid V; Shah V; Salunke HG; Mokrousov Y; Blügel S
    J Phys Condens Matter; 2015 Aug; 27(31):316002. PubMed ID: 26189771
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strain-driven electronic band structure modulation of si nanowires.
    Hong KH; Kim J; Lee SH; Shin JK
    Nano Lett; 2008 May; 8(5):1335-40. PubMed ID: 18402477
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga
    Yan Z; Kumar S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29236-29242. PubMed ID: 30427340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ballistic thermal transport in silicon nanowires.
    Maire J; Anufriev R; Nomura M
    Sci Rep; 2017 Feb; 7():41794. PubMed ID: 28150724
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics.
    Markussen T; Jauho AP; Brandbyge M
    Phys Rev Lett; 2009 Jul; 103(5):055502. PubMed ID: 19792512
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Magic structures of h-passivated 110 silicon nanowires.
    Chan TL; Ciobanu CV; Chuang FC; Lu N; Wang CZ; Ho KM
    Nano Lett; 2006 Feb; 6(2):277-81. PubMed ID: 16464050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specific heat and thermal conductivity measurements for anisotropic and random macroscopic composites of cobalt nanowires.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2008 Dec; 19(48):485712. PubMed ID: 21836319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.