These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 18811600)

  • 21. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi.
    Dixit R; Sharma A; Mourya DT; Kamaraju R; Patole MS; Shouche YS
    Int J Infect Dis; 2009 Sep; 13(5):636-46. PubMed ID: 19128996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi.
    Mead EA; Tu Z
    BMC Genomics; 2008 May; 9():244. PubMed ID: 18500992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utility of comparative anchor-tagged sequences as physical anchors for comparative genome analysis among the Culicidae.
    Chambers EW; Lovin DD; Severson DW
    Am J Trop Med Hyg; 2003 Jul; 69(1):98-104. PubMed ID: 12932106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae.
    Biessmann H; Walter MF; Dimitratos S; Woods D
    Insect Mol Biol; 2002 Apr; 11(2):123-32. PubMed ID: 11966877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus.
    Manoharan M; Ng Fuk Chong M; Vaïtinadapoulé A; Frumence E; Sowdhamini R; Offmann B
    Genome Biol Evol; 2013; 5(1):163-80. PubMed ID: 23292137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Female Anopheles gambiae antennae: increased transcript accumulation of the mosquito-specific odorant-binding-protein OBP2.
    Hoffman SA; Aravind L; Velmurugan S
    Parasit Vectors; 2012 Feb; 5():27. PubMed ID: 22309624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus.
    Pelletier J; Leal WS
    PLoS One; 2009 Jul; 4(7):e6237. PubMed ID: 19606229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran.
    Djadid ND; Gholizadeh S; Aghajari M; Zehi AH; Raeisi A; Zakeri S
    Acta Trop; 2006 Jan; 97(1):65-74. PubMed ID: 16188214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Odorant Binding Proteins (OBPs) and Odorant Receptors (ORs) of Anopheles stephensi: Identification and comparative insights.
    Zafar Z; Fatima S; Bhatti MF; Shah FA; Saud Z; Butt TM
    PLoS One; 2022; 17(3):e0265896. PubMed ID: 35316281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of an atypical insect olfactory receptor subtype highly conserved within noctuids.
    Brigaud I; Montagné N; Monsempes C; François MC; Jacquin-Joly E
    FEBS J; 2009 Nov; 276(22):6537-47. PubMed ID: 19804411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of two globin genes from the malaria mosquito Anopheles gambiae: divergent origin of nematoceran haemoglobins.
    Burmester T; Klawitter S; Hankeln T
    Insect Mol Biol; 2007 Apr; 16(2):133-42. PubMed ID: 17298561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae.
    Andronopoulou E; Labropoulou V; Douris V; Woods DF; Biessmann H; Iatrou K
    Insect Mol Biol; 2006 Dec; 15(6):797-811. PubMed ID: 17201772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfaction: mosquito receptor for human-sweat odorant.
    Hallem EA; Nicole Fox A; Zwiebel LJ; Carlson JR
    Nature; 2004 Jan; 427(6971):212-3. PubMed ID: 14724626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stage-specific expression of two actin genes in the yellow fever mosquito, Aedes aegypti.
    Vyazunova I; Lan Q
    Insect Mol Biol; 2004 Jun; 13(3):241-9. PubMed ID: 15157225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti.
    Kent LB; Walden KK; Robertson HM
    Chem Senses; 2008 Jan; 33(1):79-93. PubMed ID: 17928357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogenetic analyses of vector mosquito basic helix-loop-helix transcription factors.
    Zhang DB; Wang Y; Liu AK; Wang XH; Dang CW; Yao Q; Chen KP
    Insect Mol Biol; 2013 Oct; 22(5):608-21. PubMed ID: 23906262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of cDNAs encoding ribosomal proteins S9 and L26 from Aedes albopictus mosquito cells and identification of their homologs in the malaria vector, Anopheles gambiae.
    Li L; Fallon AM
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):44-53. PubMed ID: 16116622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A profound role for the expansion of trypsin-like serine protease family in the evolution of hematophagy in mosquito.
    Wu DD; Wang GD; Irwin DM; Zhang YP
    Mol Biol Evol; 2009 Oct; 26(10):2333-41. PubMed ID: 19578155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inversions and gene order shuffling in Anopheles gambiae and A. funestus.
    Sharakhov IV; Serazin AC; Grushko OG; Dana A; Lobo N; Hillenmeyer ME; Westerman R; Romero-Severson J; Costantini C; Sagnon N; Collins FH; Besansky NJ
    Science; 2002 Oct; 298(5591):182-5. PubMed ID: 12364797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone H1-like, lysine-rich low complexity amino acid extensions in mosquito ribosomal proteins RpL23a and RpS6 have evolved independently.
    Hernandez VP; Fallon AM
    Arch Insect Biochem Physiol; 2007 Feb; 64(2):100-10. PubMed ID: 17212354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.