These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 18811620)
1. Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana). Joanisse GD; Bradley RL; Preston CM; Bending GD New Phytol; 2009; 181(1):187-198. PubMed ID: 18811620 [TBL] [Abstract][Full Text] [Related]
2. The spread of Kalmia angustifolia on black spruce forest cutovers contributes to the spatial heterogeneity of soil resources. Joanisse GD; Bradley RL; Preston CM PLoS One; 2018; 13(6):e0198860. PubMed ID: 29927964 [TBL] [Abstract][Full Text] [Related]
3. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. Joanisse GD; Bradley RL; Preston CM; Munson AD New Phytol; 2007; 175(3):535-546. PubMed ID: 17635228 [TBL] [Abstract][Full Text] [Related]
4. Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic compounds of Kalmia angustifolia. Zeng RS; Mallik AU J Chem Ecol; 2006 Jul; 32(7):1473-89. PubMed ID: 16718563 [TBL] [Abstract][Full Text] [Related]
5. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance. Lorenz K; Preston CM J Environ Qual; 2002; 31(2):431-6. PubMed ID: 11931430 [TBL] [Abstract][Full Text] [Related]
6. Decreasing photosynthesis at different spatial scales during the late growing season on a boreal cutover. Martel MC; Margolis HA; Coursolle C; Bigras FJ; Heinsch FA; Running SW Tree Physiol; 2005 Jun; 25(6):689-99. PubMed ID: 15805089 [TBL] [Abstract][Full Text] [Related]
7. Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Baptist F; Zinger L; Clement JC; Gallet C; Guillemin R; Martins JM; Sage L; Shahnavaz B; Choler P; Geremia R Environ Microbiol; 2008 Mar; 10(3):799-809. PubMed ID: 18237312 [TBL] [Abstract][Full Text] [Related]
8. Spruce and beech as local determinants of forest fungal community structure in litter, humus and mineral soil. Asplund J; Kauserud H; Ohlson M; Nybakken L FEMS Microbiol Ecol; 2019 Feb; 95(2):. PubMed ID: 30481314 [TBL] [Abstract][Full Text] [Related]
9. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays. Norris CE; Preston CM; Hogg KE; Titus BD J Chem Ecol; 2011 Mar; 37(3):311-9. PubMed ID: 21340461 [TBL] [Abstract][Full Text] [Related]
10. Interactions betweenKalmia and black spruce: Isolation and identification of allelopathic compounds. Zhu H; Mallik AU J Chem Ecol; 1994 Feb; 20(2):407-21. PubMed ID: 24242064 [TBL] [Abstract][Full Text] [Related]
11. Does post-fire abiotic habitat filtering create divergent plant communities in black spruce forests of eastern Canada? Collier LC; Mallik AU Oecologia; 2010 Oct; 164(2):465-77. PubMed ID: 20461414 [TBL] [Abstract][Full Text] [Related]
12. Effects of plant leachates from four boreal understorey species on soil N mineralization, and white spruce (Picea glauca) germination and seedling growth. Castells E; Peñuelas J; Valentine DW Ann Bot; 2005 Jun; 95(7):1247-52. PubMed ID: 15802310 [TBL] [Abstract][Full Text] [Related]
13. Interactions among white spruce tannins, Bacillus thuringiensis subsp. kurstaki, and spruce budworm (Lepidoptera: Tortricidae), on larval survival, growth, and development. Bauce E; Kumbasli M; Van Frankenhuyzen K; Carisey N J Econ Entomol; 2006 Dec; 99(6):2038-47. PubMed ID: 17195671 [TBL] [Abstract][Full Text] [Related]
14. Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. Nguyen H; Calvo Polanco M; Zwiazek JJ Plant Biol (Stuttg); 2006 Sep; 8(5):646-52. PubMed ID: 16755463 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of sugar maple, red oak, and hemlock tannins on carbon and nitrogen cycling in temperate forest soils. Talbot JM; Finzi AC Oecologia; 2008 Mar; 155(3):583-92. PubMed ID: 18210159 [TBL] [Abstract][Full Text] [Related]
16. Temperature effects on nitrogen form uptake by seedling roots of three contrasting conifers. Boczulak SA; Hawkins BJ; Roy R Tree Physiol; 2014 May; 34(5):513-23. PubMed ID: 24831958 [TBL] [Abstract][Full Text] [Related]
17. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Choi WJ; Chang SX; Bhatti JS Ecology; 2007 Feb; 88(2):443-53. PubMed ID: 17479762 [TBL] [Abstract][Full Text] [Related]
18. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010 [TBL] [Abstract][Full Text] [Related]
19. Degradability of dissolved soil organic carbon and nitrogen in relation to tree species. Kiikkilä O; Kitunen V; Smolander A FEMS Microbiol Ecol; 2005 Jun; 53(1):33-40. PubMed ID: 16329927 [TBL] [Abstract][Full Text] [Related]
20. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. Eastaugh CS; Pötzelsberger E; Hasenauer H Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]