BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 18811642)

  • 21. Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis.
    Hos D; Bachmann B; Bock F; Onderka J; Cursiefen C
    Exp Eye Res; 2008 Nov; 87(5):427-32. PubMed ID: 18755186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of matrix metalloproteinases (MMP)-12 by myofibroblasts during alkali-burned corneal wound healing.
    Iwanami H; Ishizaki M; Fukuda Y; Takahashi H
    Curr Eye Res; 2009 Mar; 34(3):207-14. PubMed ID: 19274528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Variety of differential display on gene and corresponding gene's clone following corneal alkali burns in rats].
    Li X; Xu JT; Cui H; Hu Q; Yang CX
    Zhonghua Yan Ke Za Zhi; 2005 Oct; 41(10):905-9. PubMed ID: 16271176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Expression and significance of vascular endothelial growth factor in rat cornea after cautery with alkali].
    Qiu P; Yao K; Zhu L; Zhou C; Cheng J
    Zhonghua Yan Ke Za Zhi; 2002 May; 38(5):311-4. PubMed ID: 12133383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Keratoplasty in alkali burned corneas.
    Panda A; Mohan M; Gupta AK; Chawdhary S
    Indian J Ophthalmol; 1984; 32(5):441-6. PubMed ID: 6400105
    [No Abstract]   [Full Text] [Related]  

  • 26. Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metalloproteinases.
    Schultz GS; Strelow S; Stern GA; Chegini N; Grant MB; Galardy RE; Grobelny D; Rowsey JJ; Stonecipher K; Parmley V
    Invest Ophthalmol Vis Sci; 1992 Nov; 33(12):3325-31. PubMed ID: 1385350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alkali-induced corneal neovascularization is independent of CXCR2-mediated neutrophil infiltration.
    Lu P; Li L; Mukaida N; Zhang X
    Cornea; 2007 Feb; 26(2):199-206. PubMed ID: 17251813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of lamellar keratoplasty time on the production of serum specific antibody in corneal alkali burns].
    Zheng XF; Feng KX; Li B; Yang JZ; Ge JJ
    Zhonghua Yan Ke Za Zhi; 2004 Mar; 40(3):160-4. PubMed ID: 15307985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Corneal lymphangiogenesis: implications in immunity.
    Patel SP; Dana R
    Semin Ophthalmol; 2009; 24(3):135-8. PubMed ID: 19437348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alkali burn causes aldehyde dehydrogenase 3A1 (ALDH3A1) decrease in mouse cornea.
    Feng Y; Feng Y; Zhu X; Dang Y; Ma Q
    Mol Vis; 2004 Nov; 10():845-50. PubMed ID: 15547490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Corneal regeneration after a local burn from an alkali].
    Ronkina TI
    Vestn Oftalmol; 1979; (3):50-2. PubMed ID: 462697
    [No Abstract]   [Full Text] [Related]  

  • 32. Ocular burn: rinsing and healing with ionic marine solutions and vegetable oils.
    Said T; Dutot M; Labbé A; Warnet JM; Rat P
    Ophthalmologica; 2009; 223(1):52-9. PubMed ID: 19023222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of collagen (I) and collagenase mRNA by in situ hybridization during corneal wound healing after epikeratophakia or alkali-burn.
    Katakami C; Fujisawa K; Sahori A; Kazusa R; Sakai J; Yamamoto M; Aida T
    Jpn J Ophthalmol; 1992; 36(1):10-22. PubMed ID: 1321924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical and experimental research of corneal lymphangiogenesis after keratoplasty.
    Ling S; Lin H; Xiang D; Feng G; Zhang X
    Ophthalmologica; 2008; 222(5):308-16. PubMed ID: 18617753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1::myr-mCherry mice.
    Zhu J; Dugas-Ford J; Chang M; Purta P; Han KY; Hong YK; Dickinson ME; Rosenblatt MI; Chang JH; Azar DT
    FEBS J; 2015 Apr; 282(8):1458-1467. PubMed ID: 25688651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier.
    Ambati BK; Patterson E; Jani P; Jenkins C; Higgins E; Singh N; Suthar T; Vira N; Smith K; Caldwell R
    Br J Ophthalmol; 2007 Apr; 91(4):505-8. PubMed ID: 17151056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Blockade of Vascular Endothelial Growth Factor C Effectively Inhibits Corneal Lymphangiogenesis and Promotes Allograft Survival.
    Yan H; Yuan J; Peng R; Wang T; Deng J; Li W; Ling S
    J Ocul Pharmacol Ther; 2015 Nov; 31(9):546-54. PubMed ID: 26172526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali.
    Saika S; Ikeda K; Yamanaka O; Miyamoto T; Ohnishi Y; Sato M; Muragaki Y; Ooshima A; Nakajima Y; Kao WW; Flanders KC; Roberts AB
    Am J Pathol; 2005 May; 166(5):1405-18. PubMed ID: 15855641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of hypertonic ointments on corneal alkali burns.
    Korey M; Peyman GA; Berkowitz R
    Ann Ophthalmol; 1977 Nov; 9(11):1383-7. PubMed ID: 931280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization.
    Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X
    Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.