These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 18811733)
1. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Lee SK; Jeon JS; Börnke F; Voll L; Cho JI; Goh CH; Jeong SW; Park YI; Kim SJ; Choi SB; Miyao A; Hirochika H; An G; Cho MH; Bhoo SH; Sonnewald U; Hahn TR Plant Cell Environ; 2008 Dec; 31(12):1851-63. PubMed ID: 18811733 [TBL] [Abstract][Full Text] [Related]
2. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Strand A; Zrenner R; Trevanion S; Stitt M; Gustafsson P; Gardeström P Plant J; 2000 Sep; 23(6):759-70. PubMed ID: 10998187 [TBL] [Abstract][Full Text] [Related]
3. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate. Trevanion SJ Planta; 2002 Aug; 215(4):653-65. PubMed ID: 12172849 [TBL] [Abstract][Full Text] [Related]
4. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Sun J; Zhang J; Larue CT; Huber SC Plant Cell Environ; 2011 Apr; 34(4):592-604. PubMed ID: 21309792 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641 [TBL] [Abstract][Full Text] [Related]
6. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role for metabolite transporters. Lundmark M; Cavaco AM; Trevanion S; Hurry V Plant Cell Environ; 2006 Sep; 29(9):1703-14. PubMed ID: 16913860 [TBL] [Abstract][Full Text] [Related]
7. Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase. Lytovchenko A; Bieberich K; Willmitzer L; Fernie AR Planta; 2002 Sep; 215(5):802-11. PubMed ID: 12244446 [TBL] [Abstract][Full Text] [Related]
8. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Cho MH; Jang A; Bhoo SH; Jeon JS; Hahn TR Photosynth Res; 2012 Mar; 111(3):261-8. PubMed ID: 22297909 [TBL] [Abstract][Full Text] [Related]
9. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Yang J; Zhang J; Wang Z; Zhu Q; Liu L Planta; 2002 Aug; 215(4):645-52. PubMed ID: 12172848 [TBL] [Abstract][Full Text] [Related]
10. Lack of fructose 2,6-bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments. McCormick AJ; Kruger NJ Plant J; 2015 Mar; 81(5):670-83. PubMed ID: 25602028 [TBL] [Abstract][Full Text] [Related]
11. Diel patterns of leaf C export and of main shoot growth for Flaveria linearis with altered leaf sucrose-starch partitioning. Leonardos ED; Micallef BJ; Micallef MC; Grodzinski B J Exp Bot; 2006; 57(4):801-14. PubMed ID: 16449378 [TBL] [Abstract][Full Text] [Related]
12. Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Zrenner R; Krause KP; Apel P; Sonnewald U Plant J; 1996 May; 9(5):671-81. PubMed ID: 8653116 [TBL] [Abstract][Full Text] [Related]
13. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297 [TBL] [Abstract][Full Text] [Related]
14. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
15. Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Asatsuma S; Sawada C; Itoh K; Okito M; Kitajima A; Mitsui T Plant Cell Physiol; 2005 Jun; 46(6):858-69. PubMed ID: 15821023 [TBL] [Abstract][Full Text] [Related]
16. Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. Li JY; Liu XH; Cai QS; Gu H; Zhang SS; Wu YY; Wang CJ J Integr Plant Biol; 2008 Jun; 50(6):723-32. PubMed ID: 18713413 [TBL] [Abstract][Full Text] [Related]
17. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Lunde C; Zygadlo A; Simonsen HT; Nielsen PL; Blennow A; Haldrup A Physiol Plant; 2008 Nov; 134(3):508-21. PubMed ID: 18785901 [TBL] [Abstract][Full Text] [Related]
18. [Changes in the activities of enzymes involved in starch synthesis and accumulation in caryopsis of transgenic rice with antisense Wx gene]. Chen G; Wang Z; Liu QQ; Xiong F; Gu YJ; Gu GJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):209-16. PubMed ID: 16622321 [TBL] [Abstract][Full Text] [Related]
19. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Baroja-Fernández E; Muñoz FJ; Montero M; Etxeberria E; Sesma MT; Ovecka M; Bahaji A; Ezquer I; Li J; Prat S; Pozueta-Romero J Plant Cell Physiol; 2009 Sep; 50(9):1651-62. PubMed ID: 19608713 [TBL] [Abstract][Full Text] [Related]
20. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Bonifacio A; Martins MO; Ribeiro CW; Fontenele AV; Carvalho FE; Margis-Pinheiro M; Silveira JA Plant Cell Environ; 2011 Oct; 34(10):1705-22. PubMed ID: 21631533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]