These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 18812160)
1. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells. Heiskanen A; Spégel C; Kostesha N; Lindahl S; Ruzgas T; Emnéus J Anal Biochem; 2009 Jan; 384(1):11-9. PubMed ID: 18812160 [TBL] [Abstract][Full Text] [Related]
2. Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells. Spégel CF; Heiskanen AR; Kostesha N; Johanson TH; Gorwa-Grauslund MF; Koudelka-Hep M; Emnéus J; Ruzgas T Anal Chem; 2007 Dec; 79(23):8919-26. PubMed ID: 17973460 [TBL] [Abstract][Full Text] [Related]
3. Real-time detection of cofactor availability in genetically modified living Saccharomyces cerevisiae cells--simultaneous probing of different geno- and phenotypes. Kostesha N; Heiskanen A; Spégel C; Hahn-Hägerdal B; Gorwa-Grauslund MF; Emnéus J Bioelectrochemistry; 2009 Sep; 76(1-2):180-8. PubMed ID: 19394900 [TBL] [Abstract][Full Text] [Related]
4. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236 [TBL] [Abstract][Full Text] [Related]
5. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL; Gustafsson L; Rigoulet M; Larsson C Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [TBL] [Abstract][Full Text] [Related]
6. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Canelas AB; van Gulik WM; Heijnen JJ Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140 [TBL] [Abstract][Full Text] [Related]
7. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Shi F; Kawai S; Mori S; Kono E; Murata K FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040 [TBL] [Abstract][Full Text] [Related]
8. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J; Vemuri GN; Bao X; Olsson L Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae. Kostesha NV; Almeida JR; Heiskanen AR; Gorwa-Grauslund MF; Hahn-Hägerdal B; Emnéus J Anal Chem; 2009 Dec; 81(24):9896-901. PubMed ID: 19925001 [TBL] [Abstract][Full Text] [Related]
10. Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method. Baronian KH; Downard AJ; Lowen RK; Pasco N Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):108-13. PubMed ID: 12382050 [TBL] [Abstract][Full Text] [Related]
11. Reoxidation of cytosolic NADPH in Kluyveromyces lactis. Tarrío N; Becerra M; Cerdán ME; González Siso MI FEMS Yeast Res; 2006 May; 6(3):371-80. PubMed ID: 16630277 [TBL] [Abstract][Full Text] [Related]
12. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase. Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973 [TBL] [Abstract][Full Text] [Related]
13. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH. La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713 [TBL] [Abstract][Full Text] [Related]
15. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-labelling data. Kleijn RJ; Geertman JM; Nfor BK; Ras C; Schipper D; Pronk JT; Heijnen JJ; van Maris AJ; van Winden WA FEMS Yeast Res; 2007 Mar; 7(2):216-31. PubMed ID: 17132142 [TBL] [Abstract][Full Text] [Related]
16. Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels. Rasmusson AG; Wallström SV Biochem Soc Trans; 2010 Apr; 38(2):661-6. PubMed ID: 20298239 [TBL] [Abstract][Full Text] [Related]
17. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
18. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Hou J; Lages NF; Oldiges M; Vemuri GN Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033 [TBL] [Abstract][Full Text] [Related]
19. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Wang M; Zhao J; Yang Z; Du Z; Yang Z Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]