BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18812183)

  • 1. Assessment of protein phosphatase in a re-usable rapid assay format in detecting microcystins and okadaic acid as a precursor to biosensor development.
    Allum LL; Mountfort DO; Gooneratne R; Pasco N; Goussain G; Hall EA
    Toxicon; 2008 Dec; 52(7):745-53. PubMed ID: 18812183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the protein phosphatase-based biosensor for microcystin detection.
    Campàs M; Szydlowska D; Trojanowicz M; Marty JL
    Biosens Bioelectron; 2005 Feb; 20(8):1520-30. PubMed ID: 15626605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of protein phosphatase inhibition activities and mouse toxicities of microcystins.
    Chen YM; Lee TH; Lee SJ; Huang HB; Huang R; Chou HN
    Toxicon; 2006 Jun; 47(7):742-6. PubMed ID: 16684551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins.
    Ikehara T; Imamura S; Oshiro N; Ikehara S; Shinjo F; Yasumoto T
    Toxicon; 2008 Jun; 51(8):1368-73. PubMed ID: 18430448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid.
    Campàs M; Marty JL
    Anal Chim Acta; 2007 Dec; 605(1):87-93. PubMed ID: 18022415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a colorimetric inhibition assay for microcystin-LR detection: comparison of the sensitivity of different protein phosphatases.
    Sassolas A; Catanante G; Fournier D; Marty JL
    Talanta; 2011 Oct; 85(5):2498-503. PubMed ID: 21962674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters.
    Gkelis S; Lanaras T; Sivonen K
    Aquat Toxicol; 2006 Jun; 78(1):32-41. PubMed ID: 16540185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor.
    Xia Y; Zhang J; Jiang L
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):81-6. PubMed ID: 21498057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoprotein analysis for investigation of in vivo relationship between protein phosphatase inhibitory activities and acute hepatotoxicity of microcystin-LR.
    Tachi M; Imanishi SY; Harada K
    Environ Toxicol; 2007 Dec; 22(6):620-9. PubMed ID: 18000846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS.
    Mountfort DO; Holland P; Sprosen J
    Toxicon; 2005 Feb; 45(2):199-206. PubMed ID: 15626369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bienzyme electrochemical probe for flow injection analysis of okadaic acid based on protein phosphatase-2A inhibition: an optimization study.
    Volpe G; Cotroneo E; Moscone D; Croci L; Cozzi L; Ciccaglioni G; Palleschi G
    Anal Biochem; 2009 Feb; 385(1):50-6. PubMed ID: 19013124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A.
    Bagu JR; Sykes BD; Craig MM; Holmes CF
    J Biol Chem; 1997 Feb; 272(8):5087-97. PubMed ID: 9030574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of microcystins on phosphorylase-a binding to phosphatase-2A: kinetic analysis by surface plasmon resonance biosensor.
    Yang M; Lam PK; Huang M; Wong BS
    Biochim Biophys Acta; 1999 Mar; 1427(1):62-73. PubMed ID: 10206668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish.
    Campàs M; de la Iglesia P; Le Berre M; Kane M; Diogène J; Marty JL
    Biosens Bioelectron; 2008 Dec; 24(4):716-22. PubMed ID: 18775658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive immunoassay for the detection of microcystins in waters based on polyclonal antibodies.
    Sheng JW; He M; Shi HC; Qian Y
    Anal Chim Acta; 2006 Jul; 572(2):309-15. PubMed ID: 17723494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor.
    Wu S; Duan N; Zhang H; Wang Z
    Anal Bioanal Chem; 2015 Feb; 407(5):1303-12. PubMed ID: 25492092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein phosphatase-1 inhibition induces high SCEs in normal whole blood cultures.
    Mann RK; Bamezai R
    Indian J Exp Biol; 1995 Sep; 33(9):710-1. PubMed ID: 8557315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection.
    Sassolas A; Catanante G; Hayat A; Marty JL
    Anal Chim Acta; 2011 Sep; 702(2):262-8. PubMed ID: 21839207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample.
    Dominguez RB; Hayat A; Sassolas A; Alonso GA; Munoz R; Marty JL
    Talanta; 2012 Sep; 99():232-7. PubMed ID: 22967546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases.
    Craig M; Luu HA; McCready TL; Williams D; Andersen RJ; Holmes CF
    Biochem Cell Biol; 1996; 74(4):569-78. PubMed ID: 8960363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.