These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 18812399)

  • 1. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.
    Rajagopalan S; Jaulent AM; Wells M; Veprintsev DB; Fersht AR
    Nucleic Acids Res; 2008 Oct; 36(18):5983-91. PubMed ID: 18812399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms.
    Rajagopalan S; Sade RS; Townsley FM; Fersht AR
    Nucleic Acids Res; 2010 Jan; 38(3):893-906. PubMed ID: 19933256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative binding of tetrameric p53 to DNA.
    Weinberg RL; Veprintsev DB; Fersht AR
    J Mol Biol; 2004 Aug; 341(5):1145-59. PubMed ID: 15321712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding.
    Sun X; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides.
    Hoffmann R; Craik DJ; Pierens G; Bolger RE; Otvos L
    Biochemistry; 1998 Sep; 37(39):13755-64. PubMed ID: 9753464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-dependent acetylation of p53 by the transcription coactivator p300.
    Dornan D; Shimizu H; Perkins ND; Hupp TR
    J Biol Chem; 2003 Apr; 278(15):13431-41. PubMed ID: 12499368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phosphorylation on tetramerization of the tumor suppressor protein p53.
    Sakaguchi K; Sakamoto H; Xie D; Erickson JW; Lewis MS; Anderson CW; Appella E
    J Protein Chem; 1997 Jul; 16(5):553-6. PubMed ID: 9246643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.
    van Dieck J; Fernandez-Fernandez MR; Veprintsev DB; Fersht AR
    J Biol Chem; 2009 May; 284(20):13804-13811. PubMed ID: 19297317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins.
    Gabizon R; Brandt T; Sukenik S; Lahav N; Lebendiker M; Shalev DE; Veprintsev D; Friedler A
    PLoS One; 2012; 7(5):e38060. PubMed ID: 22693587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of DNA binding of p53 by its C-terminal domain.
    Weinberg RL; Freund SM; Veprintsev DB; Bycroft M; Fersht AR
    J Mol Biol; 2004 Sep; 342(3):801-11. PubMed ID: 15342238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.
    Sakaguchi K; Sakamoto H; Lewis MS; Anderson CW; Erickson JW; Appella E; Xie D
    Biochemistry; 1997 Aug; 36(33):10117-24. PubMed ID: 9254608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain.
    D'Abramo M; Bešker N; Desideri A; Levine AJ; Melino G; Chillemi G
    Oncogene; 2016 Jun; 35(25):3272-81. PubMed ID: 26477317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.
    Waterman JL; Shenk JL; Halazonetis TD
    EMBO J; 1995 Feb; 14(3):512-9. PubMed ID: 7859740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How p53 binds DNA as a tetramer.
    McLure KG; Lee PW
    EMBO J; 1998 Jun; 17(12):3342-50. PubMed ID: 9628871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer.
    Schumacher B; Mondry J; Thiel P; Weyand M; Ottmann C
    FEBS Lett; 2010 Apr; 584(8):1443-8. PubMed ID: 20206173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically disordered domain of tumor suppressor p53 facilitates target search by ultrafast transfer between different DNA strands.
    Itoh Y; Murata A; Takahashi S; Kamagata K
    Nucleic Acids Res; 2018 Aug; 46(14):7261-7269. PubMed ID: 29986056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides.
    Brown CJ; Srinivasan D; Jun LH; Coomber D; Verma CS; Lane DP
    Cell Cycle; 2008 Mar; 7(5):608-10. PubMed ID: 18256546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage activates p53 through a phosphorylation-acetylation cascade.
    Sakaguchi K; Herrera JE; Saito S; Miki T; Bustin M; Vassilev A; Anderson CW; Appella E
    Genes Dev; 1998 Sep; 12(18):2831-41. PubMed ID: 9744860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of DNA recognition by p53 tetramers.
    Kitayner M; Rozenberg H; Kessler N; Rabinovich D; Shaulov L; Haran TE; Shakked Z
    Mol Cell; 2006 Jun; 22(6):741-753. PubMed ID: 16793544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.