These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18813984)

  • 1. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.
    Lim YJ; Deo D; Singh TP; Jones DB; De S
    Surg Endosc; 2009 Jun; 23(6):1298-307. PubMed ID: 18813984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the mechanical response of intra-abdominal organs of fresh human cadavers for use in surgical simulation.
    Lim YJ; Jones DB; Singh TP; De S
    Stud Health Technol Inform; 2006; 119():322-7. PubMed ID: 16404070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of anisotropy in viscoelastic properties of intra-abdominal soft tissues.
    Deo D; Singh TP; Dunnican W; De S
    Stud Health Technol Inform; 2009; 142():77-81. PubMed ID: 19377118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robotic indenter for minimally invasive measurement and characterization of soft tissue response.
    Samur E; Sedef M; Basdogan C; Avtan L; Duzgun O
    Med Image Anal; 2007 Aug; 11(4):361-73. PubMed ID: 17509927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of viscoelastic soft tissue properties from in vivo animal experiments and inverse FE parameter estimation.
    Kim J; Srinivasan MA
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):599-606. PubMed ID: 16686009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo mechanical behavior of intra-abdominal organs.
    Tay BK; Kim J; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2129-38. PubMed ID: 17073317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of in-vivo force response of intra-abdominal soft tissues for surgical simulation.
    Tay BK; Stylopoulos N; De S; Rattner DW; Srinivasan MA
    Stud Health Technol Inform; 2002; 85():514-9. PubMed ID: 15458143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo and in-situ compressive properties of porcine abdominal soft tissues.
    Brown JD; Rosen J; Kim YS; Chang L; Sinanan MN; Hannaford B
    Stud Health Technol Inform; 2003; 94():26-32. PubMed ID: 15455858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physically valid surgical simulators: linear versus nonlinear tissue models.
    Misra S; Ramesh KT; Okamura AM
    Stud Health Technol Inform; 2008; 132():293-5. PubMed ID: 18391307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads.
    Rosen J; Brown JD; De S; Sinanan M; Hannaford B
    J Biomech Eng; 2008 Apr; 130(2):021020. PubMed ID: 18412507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material property determination of sub-surface objects in a viscoelastic environment.
    Mayrose J; Chugh K; Kesavadas T
    Biomed Sci Instrum; 2000; 36():313-7. PubMed ID: 10834251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data.
    Dogan F; Celebi MS
    Int J Med Robot; 2016 Sep; 12(3):410-20. PubMed ID: 26459224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics.
    Brown JD; Rosen J; Moreyra M; Sinanan M; Hannaford B
    Stud Health Technol Inform; 2002; 85():71-3. PubMed ID: 15458062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new soft-tissue indentation model for estimating circular indenter 'force-displacement' characteristics.
    Al-ja'afreh T; Zweiri Y; Seneviratne L; Althoefer K
    Proc Inst Mech Eng H; 2008 Jul; 222(5):805-15. PubMed ID: 18756697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties.
    Ledoux WR; Meaney DF; Hillstrom HJ
    J Biomech Eng; 2004 Dec; 126(6):831-7. PubMed ID: 15796342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time finite-element simulation of linear viscoelastic tissue behavior based on experimental data.
    Sedef M; Samur E; Basdogan C
    IEEE Comput Graph Appl; 2006; 26(6):58-68. PubMed ID: 17120914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue.
    Han L; Noble JA; Burcher M
    Ultrasound Med Biol; 2003 Jun; 29(6):813-23. PubMed ID: 12837497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.
    Basafa E; Farahmand F
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):297-307. PubMed ID: 20607618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.