BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 18814323)

  • 1. Peptide enrichment and protein fractionation using selective electrophoresis.
    Ly L; Wasinger VC
    Proteomics; 2008 Oct; 8(20):4197-208. PubMed ID: 18814323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefractionation, enrichment, desalting and depleting of low volume and low abundance proteins and peptides using the MF10.
    Wasinger V; Ly L; Fitzgerald A; Walsh B
    Methods Mol Biol; 2008; 424():257-75. PubMed ID: 18369868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer.
    Zheng X; Baker H; Hancock WS
    J Chromatogr A; 2006 Jul; 1120(1-2):173-84. PubMed ID: 16527286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics based on peptide fractionation by SDS-free PAGE.
    Ramos Y; Gutierrez E; Machado Y; Sánchez A; Castellanos-Serra L; González LJ; Fernández-de-Cossio J; Pérez-Riverol Y; Betancourt L; Gil J; Padrón G; Besada V
    J Proteome Res; 2008 Jun; 7(6):2427-34. PubMed ID: 18422305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis.
    Hubner NC; Ren S; Mann M
    Proteomics; 2008 Dec; 8(23-24):4862-72. PubMed ID: 19003865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropreparative fractionation of the complexome by blue native continuous elution electrophoresis.
    Huang KY; Filarsky M; Padula MP; Raftery MJ; Herbert BR; Wilkins MR
    Proteomics; 2009 May; 9(9):2494-502. PubMed ID: 19343713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidome analysis of mouse liver tissue by size exclusion chromatography prefractionation.
    Hu L; Ye M; Zou H
    Methods Mol Biol; 2010; 615():207-16. PubMed ID: 20013211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of affinity depletion of abundant proteins and reversed-phase fractionation in proteomic analysis of human plasma/serum.
    Zolotarjova N; Mrozinski P; Chen H; Martosella J
    J Chromatogr A; 2008 May; 1189(1-2):332-8. PubMed ID: 18154976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands.
    Thulasiraman V; Lin S; Gheorghiu L; Lathrop J; Lomas L; Hammond D; Boschetti E
    Electrophoresis; 2005 Sep; 26(18):3561-71. PubMed ID: 16167368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity prefractionation for MS-based plasma proteomics.
    Pernemalm M; Lewensohn R; Lehtiö J
    Proteomics; 2009 Mar; 9(6):1420-7. PubMed ID: 19235168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of proteome coverage and recovery rates for upstream fractionation methods in proteomics.
    Fang Y; Robinson DP; Foster LJ
    J Proteome Res; 2010 Apr; 9(4):1902-12. PubMed ID: 20078137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power and limitations of electrophoretic separations in proteomics strategies.
    Rabilloud T; Vaezzadeh AR; Potier N; Lelong C; Leize-Wagner E; Chevallet M
    Mass Spectrom Rev; 2009; 28(5):816-43. PubMed ID: 19072760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of human platelet membranes for proteomic analysis.
    Greening DW; Glenister KM; Sparrow RL; Simpson RJ
    Methods Mol Biol; 2009; 528():245-58. PubMed ID: 19153697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective on-line serum peptide extraction and multidimensional separation by coupling a restricted-access material-based capillary trap column with nanoliquid chromatography-tandem mass spectrometry.
    Hu L; Boos KS; Ye M; Wu R; Zou H
    J Chromatogr A; 2009 Jul; 1216(28):5377-84. PubMed ID: 19482289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a peptide-based PF2D platform for quantitative proteomics in disease biomarker discovery.
    Lee HJ; Kang MJ; Lee EY; Cho SY; Kim H; Paik YK
    Proteomics; 2008 Aug; 8(16):3371-81. PubMed ID: 18651672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide fractionation by acid pH SDS-free electrophoresis.
    Ramos Y; Garcia Y; Pérez-Riverol Y; Leyva A; Padrón G; Sánchez A; Castellanos-Serra L; González LJ; Besada V
    Electrophoresis; 2011 Jun; 32(11):1323-6. PubMed ID: 21538402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips.
    Rappsilber J; Mann M; Ishihama Y
    Nat Protoc; 2007; 2(8):1896-906. PubMed ID: 17703201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome and peptidome profiling of spider venoms.
    Liang S
    Expert Rev Proteomics; 2008 Oct; 5(5):731-46. PubMed ID: 18937563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry.
    Shiio Y; Aebersold R
    Nat Protoc; 2006; 1(1):139-45. PubMed ID: 17406225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.