These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 18814337)

  • 1. Circadian rhythm and redox homeostasis candidate genes showed association with shallow elevation in Norway spruce.
    Caré O; Chano V; Erley M; Rogge M; Gailing O
    Plant Biol (Stuttg); 2024 Jun; 26(4):508-520. PubMed ID: 38568928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the Complex Relationship Among Hyperspectral Reflectance, Photosynthetic Pigments, and Growth in Norway Spruce Ecotypes.
    Hejtmánek J; Stejskal J; Čepl J; Lhotáková Z; Korecký J; Krejzková A; Dvořák J; Gezan SA
    Front Plant Sci; 2022; 13():721064. PubMed ID: 35712586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PICEAdatabase: a web database for Picea omics and phenotypic information.
    Lu N; Zhu T; Ouyang F; Xia Y; Li Q; Jia Z; Hu J; Ling J; Ma W; Yang G; Zhang H; Kong L; Wang J
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31414118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and Physiological Analysis of the Response of Oat (Avena sativa) Seeds to Heat Stress under Different Moisture Conditions.
    Chen L; Chen Q; Kong L; Xia F; Yan H; Zhu Y; Mao P
    Front Plant Sci; 2016; 7():896. PubMed ID: 27446126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii.
    Hemme D; Veyel D; Mühlhaus T; Sommer F; Jüppner J; Unger AK; Sandmann M; Fehrle I; Schönfelder S; Steup M; Geimer S; Kopka J; Giavalisco P; Schroda M
    Plant Cell; 2014 Nov; 26(11):4270-97. PubMed ID: 25415976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery.
    Liu GT; Ma L; Duan W; Wang BC; Li JH; Xu HG; Yan XQ; Yan BF; Li SH; Wang LJ
    BMC Plant Biol; 2014 Apr; 14():110. PubMed ID: 24774513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants.
    Shakeel SN; Ul Haq N; Heckathorn S; Luthe DS
    Plant Cell Rep; 2012 Oct; 31(10):1943-57. PubMed ID: 22797908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative shotgun proteomics using a uniform ¹⁵N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii.
    Mühlhaus T; Weiss J; Hemme D; Sommer F; Schroda M
    Mol Cell Proteomics; 2011 Sep; 10(9):M110.004739. PubMed ID: 21610104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species.
    Xu Y; Gianfagna T; Huang B
    J Exp Bot; 2010 Jul; 61(12):3273-89. PubMed ID: 20547565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of phenotypic plasticity on the proteome differences between two sympatric marine snail ecotypes adapted to distinct micro-habitats.
    Martínez-Fernández M; de la Cadena MP; Rolán-Alvarez E
    BMC Evol Biol; 2010 Mar; 10():65. PubMed ID: 20210986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species.
    Xu J; Tian J; Belanger FC; Huang B
    J Exp Bot; 2007; 58(13):3789-96. PubMed ID: 17928368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of proteins associated with plant tolerance to heat stress.
    Huang B; Xu C
    J Integr Plant Biol; 2008 Oct; 50(10):1230-7. PubMed ID: 19017110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root carbon and protein metabolism associated with heat tolerance.
    Huang B; Rachmilevitch S; Xu J
    J Exp Bot; 2012 May; 63(9):3455-65. PubMed ID: 22328905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat induced changes in protein expression profiles of Norway spruce (Picea abies) ecotypes from different elevations.
    Valcu CM; Lalanne C; Plomion C; Schlink K
    Proteomics; 2008 Oct; 8(20):4287-302. PubMed ID: 18814337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein polymorphism between 2 Picea abies populations revealed by 2-dimensional gel electrophoresis and tandem mass spectrometry.
    Valcu CM; Lalanne C; Müller-Starck G; Plomion C; Schlink K
    J Hered; 2008; 99(4):364-75. PubMed ID: 18344527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitor-induced Norway spruce (Picea abies) cells reveals elements of calcium signaling in the early conifer defense response.
    Lippert DN; Ralph SG; Phillips M; White R; Smith D; Hardie D; Gershenzon J; Ritland K; Borchers CH; Bohlmann J
    Proteomics; 2009 Jan; 9(2):350-67. PubMed ID: 19105170
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.