These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 18814700)
41. How nematodes manipulate plant development pathways for infection. Gheysen G; Mitchum MG Curr Opin Plant Biol; 2011 Aug; 14(4):415-21. PubMed ID: 21458361 [TBL] [Abstract][Full Text] [Related]
42. Analysis of the transcriptome of Hirschmanniella oryzae to explore potential survival strategies and host-nematode interactions. Bauters L; Haegeman A; Kyndt T; Gheysen G Mol Plant Pathol; 2014 May; 15(4):352-63. PubMed ID: 24279397 [TBL] [Abstract][Full Text] [Related]
43. Chemical compounds from Dictyostelium discoideum repel a plant-parasitic nematode and can protect roots. Saito YF; Miyazaki SH; Bartlem DG; Nagamatsu Y; Saito T PLoS One; 2018; 13(9):e0204671. PubMed ID: 30261017 [TBL] [Abstract][Full Text] [Related]
44. Leachates from plants recently infected by root-feeding nematodes cause increased biomass allocation to roots in neighbouring plants. Zhang P; Bonte D; De Deyn GB; Vandegehuchte ML Sci Rep; 2021 Jan; 11(1):2347. PubMed ID: 33504859 [TBL] [Abstract][Full Text] [Related]
45. Plant Root-Exudates Recruit Hyperparasitic Bacteria of Phytonematodes by Altered Cuticle Aging: Implications for Biological Control Strategies. Mohan S; Kiran Kumar K; Sutar V; Saha S; Rowe J; Davies KG Front Plant Sci; 2020; 11():763. PubMed ID: 32582268 [TBL] [Abstract][Full Text] [Related]
46. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. van Dam NM; Bouwmeester HJ Trends Plant Sci; 2016 Mar; 21(3):256-265. PubMed ID: 26832948 [TBL] [Abstract][Full Text] [Related]
47. Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Piśkiewicz AM; Duyts H; Berg MP; Costa SR; van der Putten WH Oecologia; 2007 Jun; 152(3):505-14. PubMed ID: 17345102 [TBL] [Abstract][Full Text] [Related]
48. Plants Specifically Modulate the Microbiome of Root-Lesion Nematodes in the Rhizosphere, Affecting Their Fitness. Elhady A; Topalović O; Heuer H Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33806116 [TBL] [Abstract][Full Text] [Related]
49. Recognition and Response in Plant-Nematode Interactions. Siddique S; Coomer A; Baum T; Williamson VM Annu Rev Phytopathol; 2022 Aug; 60():143-162. PubMed ID: 35436424 [TBL] [Abstract][Full Text] [Related]
50. Root signals that mediate mutualistic interactions in the rhizosphere. Rasmann S; Turlings TC Curr Opin Plant Biol; 2016 Aug; 32():62-68. PubMed ID: 27393937 [TBL] [Abstract][Full Text] [Related]
51. New live screening of plant-nematode interactions in the rhizosphere. O'Callaghan FE; Braga RA; Neilson R; MacFarlane SA; Dupuy LX Sci Rep; 2018 Jan; 8(1):1440. PubMed ID: 29362410 [TBL] [Abstract][Full Text] [Related]
52. Metapopulation dynamics override local limits on long-term parasite persistence. Ram K; Preisser EL; Gruner DS; Strong DR Ecology; 2008 Dec; 89(12):3290-7. PubMed ID: 19137936 [TBL] [Abstract][Full Text] [Related]
53. Rhizosphere Interactions and the Exploitation of Microbial Agents for the Biological Control of Plant-Parasitic Nematodes. Kerry BR Annu Rev Phytopathol; 2000 Sep; 38():423-441. PubMed ID: 11701849 [TBL] [Abstract][Full Text] [Related]
54. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield. Hiltpold I; Turlings TC J Chem Ecol; 2012 Jun; 38(6):641-50. PubMed ID: 22592335 [TBL] [Abstract][Full Text] [Related]
55. Nematodes: an overlooked tiny engineer of plant health. Li G; Liu T; Whalen JK; Wei Z Trends Plant Sci; 2024 Jan; 29(1):52-63. PubMed ID: 37468419 [TBL] [Abstract][Full Text] [Related]
56. Root exudate signals in plant-plant interactions. Wang NQ; Kong CH; Wang P; Meiners SJ Plant Cell Environ; 2021 Apr; 44(4):1044-1058. PubMed ID: 32931018 [TBL] [Abstract][Full Text] [Related]
57. Plant facilitation of a belowground predator. Preisser EL; Dugaw CJ; Dennis B; Strong DR Ecology; 2006 May; 87(5):1116-23. PubMed ID: 16761589 [TBL] [Abstract][Full Text] [Related]
58. Real-Time Visualization of Cellulase Activity by Microorganisms on Surface. Kumari P; Sayas T; Bucki P; Brown-Miyara S; Kleiman M Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32916923 [TBL] [Abstract][Full Text] [Related]
59. First Report of the Root Lesion Nematode, Pratylenchus bolivianus, on Aspalathus linearis in South Africa. Daramola F; Knoetze R; Malan AP Plant Dis; 2018 Sep; 102(9):1860. PubMed ID: 30125188 [No Abstract] [Full Text] [Related]
60. Propidium iodide enabled live imaging of Pasteuria sp.-Pratylenchus zeae infection studies under fluorescence microscopy. Perrine-Walker F; Le K Protoplasma; 2021 Mar; 258(2):279-287. PubMed ID: 33070241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]