These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18814721)
41. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Begerow D; Nilsson H; Unterseher M; Maier W Appl Microbiol Biotechnol; 2010 Jun; 87(1):99-108. PubMed ID: 20405123 [TBL] [Abstract][Full Text] [Related]
42. Getting the most from the host: how pathogens force plants to cooperate in disease. Hok S; Attard A; Keller H Mol Plant Microbe Interact; 2010 Oct; 23(10):1253-9. PubMed ID: 20636104 [TBL] [Abstract][Full Text] [Related]
43. Resurgence of Less-Studied Smut Fungi as Models of Phytopathogenesis in the Omics Age. Toh SS; Perlin MH Phytopathology; 2016 Nov; 106(11):1244-1254. PubMed ID: 27111800 [TBL] [Abstract][Full Text] [Related]
45. The lipid language of plant-fungal interactions. Christensen SA; Kolomiets MV Fungal Genet Biol; 2011 Jan; 48(1):4-14. PubMed ID: 20519150 [TBL] [Abstract][Full Text] [Related]
46. Population Genomic- and Phylogenomic-Enabled Advances to Increase Insight Into Pathogen Biology and Epidemiology. Stam R; Gladieux P; Vinatzer BA; Goss EM; Potnis N; Candresse T; Brewer MT Phytopathology; 2021 Jan; 111(1):8-11. PubMed ID: 33513042 [TBL] [Abstract][Full Text] [Related]
47. Molecular approaches for a better understanding of the epidemiology and population genetics of Leishmania. Schönian G; Kuhls K; Mauricio IL Parasitology; 2011 Apr; 138(4):405-25. PubMed ID: 21078222 [TBL] [Abstract][Full Text] [Related]
49. Speciation in parasites: a population genetics approach. Huyse T; Poulin R; Théron A Trends Parasitol; 2005 Oct; 21(10):469-75. PubMed ID: 16112615 [TBL] [Abstract][Full Text] [Related]
50. Efficiency of rep-PCR fingerprinting as a useful technique for molecular typing of plant pathogenic fungal species: Botryosphaeriaceae species as a case study. Abdollahzadeh J; Zolfaghari S FEMS Microbiol Lett; 2014 Dec; 361(2):144-57. PubMed ID: 25307801 [TBL] [Abstract][Full Text] [Related]
51. More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. Rodriguez R; Redman R J Exp Bot; 2008; 59(5):1109-14. PubMed ID: 18267941 [TBL] [Abstract][Full Text] [Related]
52. New insights into animal pathogenic oomycetes. Phillips AJ; Anderson VL; Robertson EJ; Secombes CJ; van West P Trends Microbiol; 2008 Jan; 16(1):13-9. PubMed ID: 18096392 [TBL] [Abstract][Full Text] [Related]
53. Cell biology of the plant-powdery mildew interaction. Hückelhoven R; Panstruga R Curr Opin Plant Biol; 2011 Dec; 14(6):738-46. PubMed ID: 21924669 [TBL] [Abstract][Full Text] [Related]
54. [Transposable elements reshaping genomes and favouring the evolutionary and adaptive potential of fungal phytopathogens]. Grandaubert J; Balesdent MH; Rouxel T Biol Aujourdhui; 2013; 207(4):277-90. PubMed ID: 24594576 [TBL] [Abstract][Full Text] [Related]
55. [Advances in haustoria function of plants obligate parasite-A review]. Fan X; Zhang H; Yang W Wei Sheng Wu Xue Bao; 2016 Aug; 56(8):1222-33. PubMed ID: 29738192 [TBL] [Abstract][Full Text] [Related]
56. New (and used) approaches to the study of fungal pathogenicity. Gold SE; García-Pedrajas MD; Martínez-Espinoza AD Annu Rev Phytopathol; 2001; 39():337-65. PubMed ID: 11701869 [TBL] [Abstract][Full Text] [Related]