BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18815035)

  • 21. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia.
    Saviane C; Conti F; Pusch M
    J Gen Physiol; 1999 Mar; 113(3):457-68. PubMed ID: 10051520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel.
    Fahlke C; Beck CL; George AL
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2729-34. PubMed ID: 9122265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preclinical pharmacological in vitro investigations on low chloride conductance myotonia: effects of potassium regulation.
    Hoppe K; Chaiklieng S; Lehmann-Horn F; Jurkat-Rott K; Wearing S; Klingler W
    Pflugers Arch; 2020 Oct; 472(10):1481-1494. PubMed ID: 32748018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotypic variability in myotonia congenita.
    Colding-Jørgensen E
    Muscle Nerve; 2005 Jul; 32(1):19-34. PubMed ID: 15786415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exon 17 skipping in CLCN1 leads to recessive myotonia congenita.
    Chen L; Schaerer M; Lu ZH; Lang D; Joncourt F; Weis J; Fritschi J; Kappeler L; Gallati S; Sigel E; Burgunder JM
    Muscle Nerve; 2004 May; 29(5):670-6. PubMed ID: 15116370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions.
    Ludewig U; Jentsch TJ; Pusch M
    J Gen Physiol; 1997 Aug; 110(2):165-71. PubMed ID: 9236209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel murine myotonia congenita without molecular defects in the ClC-1 and the SCN4A.
    Shirakawa T; Sakai K; Kitagawa Y; Hori A; Hirose G
    Neurology; 2002 Oct; 59(7):1091-4. PubMed ID: 12370472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myotonia congenita: novel mutations in CLCN1 gene and functional characterizations in Italian patients.
    Ulzi G; Lecchi M; Sansone V; Redaelli E; Corti E; Saccomanno D; Pagliarani S; Corti S; Magri F; Raimondi M; D'Angelo G; Modoni A; Bresolin N; Meola G; Wanke E; Comi GP; Lucchiari S
    J Neurol Sci; 2012 Jul; 318(1-2):65-71. PubMed ID: 22521272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical evaluation and cellular electrophysiology of a recessive CLCN1 patient.
    Lucchiari S; Ulzi G; Magri F; Bucchia M; Corbetta F; Servida M; Moggio M; Comi GP; Lecchi M
    J Physiol Pharmacol; 2013 Oct; 64(5):669-78. PubMed ID: 24304580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A missense mutation in canine C1C-1 causes recessive myotonia congenita in the dog.
    Rhodes TH; Vite CH; Giger U; Patterson DF; Fahlke C; George AL
    FEBS Lett; 1999 Jul; 456(1):54-8. PubMed ID: 10452529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen).
    Steinmeyer K; Lorenz C; Pusch M; Koch MC; Jentsch TJ
    EMBO J; 1994 Feb; 13(4):737-43. PubMed ID: 8112288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional characterization of CLCN1 mutations in Taiwanese patients with myotonia congenita via heterologous expression.
    Lin MJ; You TH; Pan H; Hsiao KM
    Biochem Biophys Res Commun; 2006 Dec; 351(4):1043-7. PubMed ID: 17097617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Role and function of voltage-gated chloride channels of the CIC family and their defects leading to genetic diseases].
    Dołowy K; Bednarczyk P; Hordejuk R; Dworakowska B; Nurowska E; Jarzabek W
    Postepy Hig Med Dosw; 2002; 56(3):307-13. PubMed ID: 12194243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
    Ludewig U; Jentsch TJ; Pusch M
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):691-702. PubMed ID: 9051580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels.
    Fahlke C; Rüdel R; Mitrovic N; Zhou M; George AL
    Neuron; 1995 Aug; 15(2):463-72. PubMed ID: 7646898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanism underlying transient weakness in myotonia congenita.
    Myers JH; Denman K; DuPont C; Hawash AA; Novak KR; Koesters A; Grabner M; Dayal A; Voss AA; Rich MM
    Elife; 2021 Apr; 10():. PubMed ID: 33904400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical myotonia in heterozygous carriers of recessive myotonia congenita.
    Deymeer F; Lehmann-Horn F; Serdaroğlu P; Cakirkaya S; Benz S; Rüdel R; Ozdemir C
    Muscle Nerve; 1999 Jan; 22(1):123-5. PubMed ID: 9883868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Function of the CLC chloride channels and their implication in human pathology].
    Vandewalle A
    Nephrologie; 2002; 23(3):113-8. PubMed ID: 12087807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel chloride channel mutations leading to mild myotonia among Chinese.
    Burgunder JM; Huifang S; Beguin P; Baur R; Eng CS; Seet RC; Lim EC; Ong BK; Hunziker W; Sigel E
    Neuromuscul Disord; 2008 Aug; 18(8):633-40. PubMed ID: 18579381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plateau potentials contribute to myotonia in mouse models of myotonia congenita.
    Wang X; Dupont C; Grant D; Voss AA; Rich MM
    Exp Neurol; 2023 Mar; 361():114303. PubMed ID: 36563835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.